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) FOREWORD

The Statistical Reporting Service (SRS) has been engaged for
many &ears in the training of agricultural statisticians from around
the world. Most of these participants come under the support of the
.Agency for International Development (AID) training programs; however,
many also come under sponsorship of the Food and Agricu;puﬁﬁwq;ganization
into the intern;tional Statisticgl Programs Center of the Bu;eau of the
Census, with which SRS is cooperating.

This t:eatise was developgd by the SRS with the.coog%ration of
AID and the Center, in an effort”tq providglimprovedrmaterials for
teaching and reference in the area of agricultural statistics, not

only for foreign students but also for development of staff working

for these agencies.

HARRY C. TRELOGAN
Administrator
Statistical Reporting Service

Washington, D. C. September 1974



PREFACE

The author has felt that applied courses in sampling should give more
attention to elementary theory of expected values of a random variable.
The theory pertaining to a‘'random variable and to functions of random
variables is the foundation for probability sampling. Interpretations
of the accuracy of estimates from probability sample surveys are predicated
on, among other things, the theory of expected values.

There are many students with career interests in surveys and the
application of probability sampling who have very limited backgrounds in

mathematics and statistics. Training in sampling should go beyond simﬁly'

o«

3
~

learning about sampie designs in a descriptive manner. The foundaﬁion;”
in mathematics and probability should be iniluded. It-can Q1) ademdcﬁ;;
to the breadth of underatanding of blas, random sampling error, compdgéﬂﬁs‘
of error, and other technical concepts; (2) enhance one's ability td maké
practical adaptations of sampling principals and correct use of fofﬁuias;
and (3) make communication with mathematical statisticians easier and moré o
meaningful.

This monograph is intended as a reference for the convenience of

students in sampling. It attempts to express relevant, introductory

° -

mathematics and probabi;ity in the context of sample surveys. Although
some proofs are presented, the emphasis‘is more on exposition of mathe-
matical language and concepts than _on the mathematics per se and rigorous
proofs. Many problems are given as exercises so a gstudent may test his
interpretation or understanding of the concepts. Most of the mathematics
is elementary. If a formula looks involved, it is probably because it

represents a long sequence of arithmetic operations.

i1
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Each chapter begins with very simple explanations and ends at a much
more advanced level. Most students with only high school algebra should
have no difficulty with the first parts of each chapter. Students with a
few courses in college mathematics and statistics might review the first
parts of ;ach chapter and spend considerable time studying the latter parts.
In fact, some students might prefer to start with Chapter III and refer to
Chapters I and 1II only as needed.

Discussion of expected values of random variables, as in Chapter III,
was the original purpose of this monograph. Chapters I and II were added
as background for Chapter III. Chapter 1V focuses attention on the dis-
tribution of an estimate which is the basis for comparing the accuracy
of alternative sampling plans as well as a basis for statements about the

accuracy of an estimate from a Famp;e, . The content of Chapter IV is o

.included in books on sampling, but it is important that students hear or

read more than one discussion of the distribution of an estimate, espe-
cially with reference to estimates from actual sample‘surveys.

The author's interest and experience in training has been primarily
with persons who had begun careers in agricultural surveys. I appreciate
the opportunity, which the Statistical Reporting Service has provided, to

prepare this monograph.

Earl E. Houseman
Statistician
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CHAPTER I. NOTATION AND SUMMATION

1.1 INTRODUCTION

To work with large amounts of data, an appropriate system of notation
is needed. The notation must identify data by individual elements, and
provide meaningful mathematical expressions for a wide variety of summaries
from individual data. This chapter describes notation and introduces
summation algebra, primarily with reference to data from census and sample
surveys. The purpose is to acquaint students with notation and summation

rather than to present statistical concepts. Initially some of the expres-

sions might seem complex or abstract, but nothing more than sequences of”w i

operations involving addition, subtraction, multiplication, and division . ..

is involved. Exercises are included so a student may test his interpreta-
tion of different mathematical expressions. Algebraic.manipulatibns are
also discussed and some algebraic exercises are included. To a consider- .
able degree, this chapter could be regarded as a manual of exercises for
students who are interested in sampling but are not fully familiar with
the summation symbol, . Familiarity with :the mathematical language will
make the.study of sampling much easier.
1.2 NOTATION AND THE SYMBOL FOR SUMMATION

"Element" will be used in this monograph as a general expression for
a unit that a measurement pertains to. An element might be a farm, a per-
son, a school, a stalk-of corn. or an animal. Such units are sometimes
called units of observation or reporting units. .Generally, there are
several characteristics or items of information about an element that one

might be interested in.



""Measurement" or "value" will be used as general terms for the
numerical value of a specified characteristic for an element. This
includes assigned values. for example, the element might be a farm and
the characteristic c&uld be whether wheat is being grown or is not being
grown on a farm. A value of "1" could be assigned to a farm growing wheat

and a value of "0" to a farm not growing wheat. Thus, the "measurement”

or "value" for a farm growing wheat would be "1" and for a farm not grow-

ing wheat the value would be "0."
Typically, a set of measurements of N elements will be expressed as
follows: xl, xz,...,xN where X refers to the characteristic that is

measured and the index (subscript) to the various elements of the popula-

tion (or set).. For example,'if there are N persons and the characteristic

1

To refer to any one of elements, not a specific element, a subscript "i"

X is a person's height, then X, 1s the height of the first person, etc.

is used. Thus, Xi (read X sub 1)'means the-value of X for any one of the

N elements. A common expression would be "X1 is the value of X for the
ith element."
The Greek letter I (capital sigma) is generally used to indicate a

sum. When found in an equation, it means "the sum of." For example,

N

I X, represents the sum of all values of X from X, to XN; that 1s,
=1 i 1

N

LX, =X + X +...+ XN. The lower and upper limits of the index of
=1 i 1 2 )

summation are shown below and above the summation sign. For example, to

' 20
specify the sum of X for elements 11 thru 20 one would write X Xi.
i=11

"
o



You might also see notation such as "IX, where 1 = 1, 2,..., N" which

i

indicates there are N eléments (or values) in the set indexed by serial

numbers 1 thru N, or for part of a set you might see'"IX, where i = 11,

i
12,..., 20." Generally the index of summation starts with 1; so you will

N

often see a summation written as in. That is, only the upper limit of
i

the summation is shown and it is understood that the summation begins with

i=]l. Alternatively, when the set of values being summed is clearly under-

stood, the lower and ﬁpper limits ﬁight nof‘be shown. Thué, it is under-

stoéd“théénzx£ or ZX£ fs the sum of X over all values of the set under
i ,

consideration. Sometimes a writer will even drop the subscript and use

IX for the sum ofiéll valueé of X. Usually the simplest notation that is
- d *

.
-
A

4 4

adequate for the$purpose is adopted. 1In this monograph, there will be

®

some deliberate variation in nofation to familiarize students with various

representations of data.

An average is usually indicated by a "bar" over the symbol. For

exanmple, X (read "X bar,"

or sometimes '"bar X'") means the average value of
AT L X,

' J z _ i=1
jlfw\‘, } X. Thus, X N

mation makes it clear that the sum is being divided by the number of elements

\ Ix |
and X is the average of all elements. However, “ﬁi would also be inter-

« In this case,showing the upper limit, N, of the sum-

preted as the average of all values of X unless there is an indication to

the contrary.

Do not try to study mathematics without pencil and paper. Whenever

the shorthand is not clear, try writingz it out in long form. This will

often reduce any ambiguity and save time.



1)

(2)

(3)

(4)

(5)

(6)

(7N

(8)

(9)

(10)

(11)

(12)

(13)

Here are some examples of mathematical shorthand:

Suq,of the reciprocals of X

Sum of the differences between-

Xi and -a constant, C

Sum of the deviations of Xy
from the average of X ‘

Sum of the absolute values 6f
the differences between X' A
and X. (Absolute value, ..
indicated by the vertical
lines, means the positive
value of the difference) . ': "

Sum of the squares of X o

i

T
! itk

Sum of squares of thé!
deviations of X from X

Average of the squares of the
deviations of X from X

Sum of products of X and Y

Sum of quotients of X
divided by Y

Sum of X divided by the
sum of Y

Sum of the first N digits

N
% -%+%-ﬂ”+l
=151 % % Xy

N .
i)il(xi-C)-(Xl-C)+(X2—C)+...+(XN--C)

N e -— —
i (X -X) = (X X+ (X,~X)+. . (X -X)

I|x 1—3'(| =] xl-il + X,~X| +. v XyX|.

2 2 2 2 2
XXi - X1‘+ X2 + X3 +.ee XN

>:(xi-;'<)2 - (xl-:‘c)2 oot (xN-i)Z

N

=y 2
‘I (X,-X) -2 - 2
=1 i ) (Xl-x) +...+(XN—X)

N N

N

XY

o Y4 = X1Y1+X2Y2+...+XNY

N

EXi i} X1+X2+...+ XN
ZYi Y1+Y2+...+ Y

N

N
L2 i=14243+...+ N
i=1

N
Iz iX

o = X, +2X +3X3+...+ NXN

i 172

6

i
i51(—1) Xi —X1+X2—X3+X4-X5+X6



Exercigse 1.1. You are given a set of four elements having the

following values of X: x1 -2, Xz

understanding of the summation notation, compute the values of the follow-

=0, X3 = 5, XA = 7. To test your

ing algebraic expressions:

' Expression ‘ Answer
4
D) I (X 30
. 1=1 '
(2)  £2(x-1) . 20
J, b’
| (3) - 2D 20
SR T S S G AR LY R PRSP TR PO SR
4 =~ 27 ; T
N . IX -
(5) X = - 3.5
6) Ix> 78
1
M exp)? 78
(8) [zxi]2 196
2
| (9 I - %) 64
e ‘v] 2
. (10) (X)) - IX, 64
. an ) 45
a2 bl 0
4 4
(13) £ (X -3) 66
1=1 :
‘ 4 , 4
() £X - £ (3 66
1=] i=1

4
Note: I (3) means find the sum of four 3's
i=1




Expression (Continued) Answer
(15) =X, - X) 0
=2
(X, - X)
(16) —— 23
N-1 3
z[xi—zxi+22] )
an 1 2
N-1 3
zxi - NZ? 29
(18) —f—— =
N-1 3

Definition 1.1. The variance of X where X = Xl, Xz,..., XN’ is

defined in one of two ways:

N
£ (X

2 _i=11
N

—-x-) 2 "
g

orxr
N "o
r.(xi-:'()2

2 _ 1i=1

S N-1

The reason for the two definitions will be explained in Chapter III.
The variance formulas provide measures of how much the values of X vary
(deviate) from the average. The square root of the variance of X is
called the standard deviation of X. The central role that the above
definitions of variance and standard deviation play in sampling theory .
will. become apparent as you study sampling. The variance of an estimate
from a sample is one of the measures needed to judge the accuracy of the
estimate and to evaluate alternative sampling designs. Much of the algebra

and notation in this chapter is related to computation of variance. TFor



complex sampling plans, variance formulas are complex. This chapter
should help make the mathematics used in sampling more readable and more
meaningful when it is encountered.

Definition 1.2. "Population" is a statistical term that refers to

a set of elements from which a sample is selected (“Universe" is often
used instead of "Population").

Some examples of populations are farms, retail stores, students,
households, manufacturers, and hospitals. A complete definition of a
population is a detailed specification of the elements that compose it.
Data to be collected also need to be defined.‘ Problems of defining popu-
lations to be surveyed should receive much attention in courses on sampling.
From a defined population a sample of elements is selected, information
for each element in the sample is collected, and inferences from the sam-
ple are made about the population. Nearly‘all populations for sample
surveys are finite so the mathematics and discussion in this monograph
are limited to finite populations.

In the theory of sampling, it is important to distinguish between
data for elements in a sample and data for elements in the entire popula-
tion. Many writers use uppercase letters when referring to the population
and lowercase letters when referring to a sample. Thus Xl,..., XN would
represent the values of some characteristic X for the N elements of the
population; and Xyseers xn would represent the values of X in a sample of
n elements. The subscripts in Xyseoes X simply index the different
elements in a sample and do not correspond to the subscripts in Xl,..., XN
which index the elements of the population. In other words, x, could be

i
any one of the Xi‘s. Thus,



LN
T

N
L
- " X represents the population mean, and
i
T
o~ X Trepresents a sample mean

In this chapter we will be using only uppercase letters, except for
constants and subscri?ts, because the major emphasis is on symbolic repre-
sentation of data for a set of elements and on algebra. For this purpose,
it is sufficient to start with data for a set of elements and not be
éoncerned with whether the data are for a sample of elements or for all
elements in a poﬁulation.

The letters x,ﬁY, and Z'are often used to represent different chafac-

L

teristics (variabies) whereas the first letters of the alphabet are commonly

1

used as constants. There are no fixed rules regarding notation. . For

example, four different variables or characteristics might be called X

1!
xz, X3, and Xa. In that case Xl1 mighf be used ‘to represent the ith value
of the variable Xl. Typically, writers adopt notation that is convenient

for their problems. It is not practical to completely standardize notationm.

Exercise 1.2. In the list of expressions in Exercise 1.1 find the

variance of X, that is, find Sz. Suppose that X, is 15 instead of 7. How

4
much is the variance of X changed? Answer: From 9§-to 44% .

Exercise 1.3.- You are given four elements having the following values

of X and Y



Find the value of the following expressions:

Expression Answer Expression Answer
L }:XiYi 107 (7 in-ZYi -6
‘ 2
(2) (in)(ZYi) 280 (8) Z(Xi-Yi) 74
= S 2 .2
(3) Z(Xi-x)(Yi-Y) 37 (9) Z(Xi-Yi) =132
(4) X, Y, -NXY 37 (10) zx3-ry? -132
- i1 N §
1. % 2
o (5) E-Z T 1.625 (11) [Z(Xi—Yi)] 36
: i
‘ “(G)sz(xﬁ.ytyuéuwimgw -6 12)  [EX ]2—[ZY ]2 -204
| 11 i i

1.3 FREQUENCY DISTRIBUTIONS
{ Several elements in a set of N might have tlte same value for some

characteristic X. For example, many people have the same age. Let X

t : k|
; be a particular age and let Nj be the number of people in a population
K
(set) of N people who have the age Xj. Then I Nj = N where K is the
i=1

number of different ages found in the population. Also Zijj is the sum-

IN.X
of the ages of the N people in the population and _f%—i represents the
b

average age of the N people. A listing of Xj and Nj is called the

frequency distribution of X, since N, is the number of times (frequency)

b

that the age X, is found in the population.

3

On the other hand, one could let Xi represent the age of the ith
individual in a population of N people. Notice that j was an index of age.
We are now using i as an index of individuals, and the average age would

X IN X X

1 - iy 1
be written as it Note that ZNij in and that ZNj N The



i
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choice between these two symbolic representations of the age of people in

the population is a matter of convenience and purpose.

Exercise 1l.4. Suppose there are 20 elements in a set (that is, N = 20)

and that the values of X for the 20.elements are: 4, 8, 3, 7, 8, 8,’3, 3,

7, 2, 8, 4, 8, 8, 3, 7, 8, 10, 3, 8.

1-4

(1)

List the values of X, and N,, where j is an index of the

h h)
values 2, 3, 4, 7, 8, and 10.

distribution of X.

(2) What is K equal to?

This is the frequency

Interpret and verify the following by making the calculations indicated:

N K
(3) X, = INX
ju1 1 gep 33
! b I } ' Bk
IX, IN.X
i = i '
@ = l-X |
J
.2 .2
$(X,~%)° N, (X,-%)
o oGy
h |
ALGEBRA

In arithmetic and elementary algebra, the order of the numbers when

addition or multiplication is performed does not affect the results. The

familiar arithmetic laws when extended to algebra involving the summation

symbol lead to the following important rules or theorems:

Rule 1.1 Z(Xi—Yi+Zi) - in

or E(X1£+X2{+...+XK1) =

--ZY1'+ZZi

ZX11+ZX21+...+EXKi

Rule 1.2 IaX, = alX, where a is a constant

i i

Rule 1.3 I(Xi+b) = IX +Nb where b is constant

1
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If it is not obvious that the above equations are correct, write both
sides of each equation as series and note that the difference between the
two sides is a matter of ‘the order in which the summation (arithmetic) is
performed. Note that the use of parentheses in Rule 1.3 means that b is
contained in the series N times. Tha't- is,

N
1El(xi+b) = (xl+b)+(x2+b)+...+(xN+b)

- (X +X +...+XN) + Nb

On the basis of Rule 1. 1 we can write

» g SRR el A
N N N ’
I (X{H)) - z Xi + L b Fokl LT
i=] i=1 & 1=} :
N o | |
The expression I. b means"sum the value of b,which occurs N times." Therefore,
i=1 .
N C I
L b = Nb.
1-1 1
N .
Notice that if the expression had been I X1+b, then b is an amount, to add
i
N
to the sum, L X, 6 .
1
i
- N - -N -
In many equations X will appear; for example, I xxi or L (Xi—x).
i i
Since X is constant with regard to the summation, zixi = izxi . Thus,
‘i:}'l1
L(X,~X) = T X,~IX = IX, - NX. By definition,X = 2— . Therefore,
1 i i N
i i i i
NX = IX, and Z(X,-X) = O.
i i
i i
N 2
To work with an expression like 2(X1+b) we must square the quantity
i

in parentheses before summing. Thus,



12

I(X, + b)% = 5(X% + 2bX, + b2)
1 i i b

2

= IX] + I2bX + Ib° Rule 1

e N

= IX, + 2bZXi + sz Rules 2 and 3

Lanll ]

Verify this result by using series notation. Start with (X1+b)2+...+(xN+b)2.
It is very important that the ordinary rules of algebra pertaining to
the use of parentheses be observed. Students frequently make errors

because inadequate attention is given to the placement of parentheses or

to the interpretation of parentheses. Until you become familiar with the
above rules, practice translating shorthand to series and series to short-

hand. Study the following examples carefully:

W zx)?# ex)? The left-hand side is the sum of
the squares of Xi. The right-hand
side is the square of the sum of xi.
On the right the parentheses are
necessary. The left side could

2 2 have been written in .
Xi ZXi
(2) =7 Rule 1.2 applies.
N
W 2 2 2
o (3) Z(X1+Yi) ¥ zxi + ZYi A quantity in parentheses must be
h squared before taking a sum.
(%) z(xi + Yi) - 1%’ + 12 Rule 1.1 applies
i

(5) inYi ¥ (in)(XYi) The left side is the sum of products.
The right side is the product of
sums.,

’ 2 2 2

(6) X(Xi—Yi) in 2£xiYi+ZY

N N
(7) fa(X

-b) # arX, - ab
g 1 g1



(8)

9

(10)

13

N - N

ia(xi—b) - a:i:xi - Nab
N N .

a[ixi—b] - aixi—ab

2
2Xi(xi-Yi) - zxi - ZXiYi

Exercise 1.5. Prove the following:

(}) NX

In all cases, assume 1 = 1, 2,..., N.

(1) x(xi-i)_f 0

¥y

il pt
2 X

(2)

Iny “\ - xi L “j"' A ’ !
b\ 2

(X))

[N o N [

_2-

Low e el N . N
(4) L (aX, +bY +C) = aZX +bLY_+NC
PRI e A St

i

' Note: Equations (5) and (6) should be (or become)
very familiar equations.
2 =2

-2
(5) Z(Xi-X) - in - NX

(6) Z(Xi-x)(Yi-Y) - zxiYi-Nx?

X
i 2 1 2
¢)) Z(a + Yi) ;3 Z(Xi+aYi)

(8) Let Y, = atbX , show that ¥ = atbX

and zvi = Na(a+2bX) + b> zxi

(9) Assume that X, = 1 for N, elements of a set and that X, = 0

i 1 i
for NO of the elements. The total number of elements in the
N N
1 0
set is N N1+N0. Let N P and N Q. Prove that
r(x,-H2
———— = PQ.

N
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10) B ~d)° = x,-B2 + NE-d)2. Bint: Rewrite (X,~d)°
as [(xi-i)+(i-d)]2. Recall from elementary algebra that
2 2 2 = -
(a+b)” = a"™+2ab+b” and think of (Xi—X) as a and of (X-d)
as b. For what value of d is Z(Xi-d)2 a minimum?

1.5 DOUBLE INDEXES AND SUMMATION

When there is more than one characteristic for a set of elements,
the different chara(;teristics might be distinguished by using a different
letter for each or by an index. For example, X, and Y might represent

i i
the number of acres of wheat planted and the number of acres of wheat
harvested on the ith farm. Or, X15 might be used where i is the index
for the characteristics an§ j is the index for elements; that is, xij
would be the value of characteristic X1 for the jth element. However,
when data on each of several charaétériéi?cétfor a set of elements are
to be processed in the same way, it might not be necessary to use

notation that distinguishes the characteristics. Thus, one might say

(X —i)z

calculate —_ﬁ:f__— for all characteristics.

More than one index is needed when the elements are classified accord-
ing to more than one criterion. For example, Xij might represent the value
of characteristic X for the jth farm in the ith county; or xijk might be

th th th
the value of X for the k  household in the j  block in the i~ city.
As another example, suppose the processing of data-for farms involves

classification of farms by size and type. We might let X represent

1k

the value of characteristic X for the kth farm in the subset of farms

classified as type j and size 1. If Nij is the number of farms classified



N 15
z

as type j and size i, then ELTT_-‘—_ - iij is the average value of X for
ij )

the subset of farms classified as type j and size i.

There are two general kinds of classification--cross classification
and hierarchal or nested classification. Both kinds are often involved
in the same problem. However, we will discuss each separately. An
example of nested classification is farms within counties, counties within
States, and States within regions. Cross classification means that the

o . L TE . " M
data can be arranged in two or more dimensions as illustrated in the next

section. 7

1.5.1 CROSS CLASSIFICAIION
y el v T I S

As a specific illusttation of cross classification and summation with

] . "o PN !

two indexes, suppose we are working with the acreages of K crops on a set
of N farms. Let xij represent the acﬁeége of"the':i.'h crop on the j farm

where {1 =1, 2,..., Kand § = 1, 2,..., N. 1In this case, the data could
1 i ) N

be arranged in a K by N matrix as follows:

Column (j)

e
s ap o8 ae

: : Row :
. Row (i) . .
; ;1 3 oot
f 1 i xll cee le ces XlN i § le f
: i il aaae xij L B xiN :§xij :

Column
total

1
>4
o1
>4
™
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s re 88 sa e

[ ]
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N
The expression I X (or Z X,,) means the sum of the values of X,, for a
j 1} j 13 13

fixed value of i. Thus, with reference to the matrix, I xij is the total
h

of the values of X in the ith row; or, with reference to the example about

farms and crop acreages, L X13 would be the total acreage on all farms of
b K
whatever the 1th crop is. Similarly, I X, (or L Xy

) 1s the column total
g 374l

bt = 3 e
[NV L

for the jtb column, which in the example is the total for the jth farm of

the acreages of the K crops under consideration. The sum of all values of

KN
X could be written as I X,, or XL X,,. |
g9 ¥ gy

Double summation means the sum of sums. Breaking a double sum into

parts can be an important aid to understanding it. Here are two examples:

KN N N N
(1) ZLX,, =L X,,+ZIX,, +...+2 (1.1)
et F R 3 X3

With reference to the above matrix, Equation (l.1) expresses the grand total

as the sum of row totals.

KN N N
(2) i; Xij(Y1j+a) = § le(Y1j+a) +...+ § ij(YKj+a) (1.2)
RN ( D
N v
g le(Y1j+a) = Xll(Y11+a) +. ..+ XlN(Y1N+a)

In Equations (1.1) and (1.2) the -double sum is written as the sum of K
partial sums, that is, one partial sum for each value of 1.

Exercise 1.6. (a) Write an equation similar té Equation (1.1) that
expresses the grand total as the sum of column totals. (b) Involved in

Equation (1.2) are KN terms, X (Yij+a). Write these terms in the form of

1}

a matrix.
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The rules given in Section 1.4 also apply to double summation.

Thus,
KN KN KN
LT X, , (Y, ,+a) = I X Y + all X (1.3)
13 13713 13 ij 1] 13 ij

Study Equation (1.3) with reference to the matrix called for in Exercise
1.6(b). To fully undeérstand Equation (1.3), you might need to write out
intermediate steps for getting from the left-hand side to the right-hand

side of the equation.

To simplify notation, a system of dot notation is commonly used, for

example:
§ Xpy = Xy, |
R B
A

The dot in Xi_ indicates that an 'index in addition to i is involved and
X;. is interpreted as the sum of the values of X for a fixed value of i.
Similarly, X.j is the sum of X for any fixed value of j, and X represents
a sum over both indexes. As stated above, averages are indicated by use of

a bar. Thus X, is the average of X,, for a fixed value of i, namely

i. ij
N
X
j-]_ ij - -
N = Xi' and X _ would represent the average of all values of Xij’
iz Xij
namely S M

NK
Here is an example of how the dot notation can simplify an algebraic
expression. Suppose one wishes to refer to the sum of the squares of the

row totals in the above matrix. This would be written as E(Xi.)z. The sum
' i
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of squares of the row means would be I(X .)2. Without the dot notation the

i i 2
N
. KN 2 K zxij
corresponding expressions would be Z(inj) and I 1§—— . It is very
1] i
KN 2
important that the parentheses be used correctly. For example, Z(inj) is
i}
KN ,
not the same as szij . Incidentally, what is the difference between the
i)

last two expressions?
Using the dot notation, the variance of the row means could be written

as follows:

X
z(ii.-i_.)z
s i
VX, ) = 53 (1.4)

where V stands for variance and V(ii_) is an expression for the variance of
ii- . Without the dot notation, or something equivalent to it, a formula
for the variance of the row means would look much more complicated.

Exercise 1.7. Write an equation, like Equation (1.4), for the variance

of the column means.

Exercise 1.8. Given the following values of xij

. i
i : . :

. 1 . 2 . 3 . 4
1 8 11 9 14
2 : 10 13 11 14
3 12 15 10 17




19

Find the value of the following algebraic expressions:

Illustration 1.1.

Expression Answer Expression Answer
N N_ - 2
(1) X 42 (9) KI(X, -X ) 54
1] e e
b h|
N KN 9
X (10) ZII (X -X, +X ) 6
2:‘ ij j 5 s
(2) ji_ 12 43 R
‘ KN
. = IIX
‘(3) X,. 13.5 . gxz 1 1 .
1’ KN
5 %) Ix;, 45 1]
: 2
KN
KN K
(5) IIX 144 sz [}'zxij:]
i 1§ g 1 ij
j . (12) ¥~ KN 18
(6) X_, 12 ‘
) 2
KN - ¢ (13)’ 2(x ) 21
M iz K D7 78 Pt B 1
1ij ] '
KN T
K_ _ (14) zz(xij ) 60
(8) NI(X, X ) 18 13
i

To introduce another aspect of notation, refer to

2y, - the matrix on Page 15 and suppose that the values of X in row one are to
be multiplied by a, the values of X in row two by a,, etc. The matrix
LY
would then be alxll . alxlj eee alxlN
aixil e aixij e aixiN

because the index of a and the

The general term can be written as aixij
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*
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index 1 in xij are the same. The total of all KN values of aixij is

KN
IZa, X . Since a, is constant with respect to summation involving j,

13 1713 i
. N
we can place a, ahead of the summation symbol £ . That is, ZZaiXi -
3 19 14
Ia. X .
i ij ij
Exercise 1.9. Refer to the matrix of values of xij in Exercise 1.8.
Assume that ay - -], a, = 0, and ay -_1.
Calculate:
(1) Ifa,X ‘
13t . 2l
' " ‘ "i ] ‘
a X, .
(2) zz—*—ﬁ—i-l
ij
(3) IIa X2 . Answer:-296
g3 113 B

Show algebraically that:

(4) Ifa,X,, = IX,,-E
Pt It j’ﬁj

a X
(5) I —i—N-l‘i - %, -%,
ij - *

2 2 2
(6) ZZaixij = §x3j-§xlj

Exercise 1.10. Study the following equation and if necessary write

the summations as series to be satisfied that the equation is correct:

KN
If(aX, 4bY,,) = alIX,, + bIIY
1y A3 1y 870

Illustration 1.2. . Suppose

= = PP - se N
Yij xij+ai+bj+c where 1 1, 2, ,K and j 1, 2, R
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The values of Y can be arranged in matrix format as follows:

13
Yll - xll + a1+b1+c . - L] L] L] - L] a L] L .. Y

1N - xlN + al+bN+c

) Y =X + )
| Y, oKy toagh

Yer =" Xgp tgtbyte o voee e e e e Y = Xy F gyt

Notice that a, is a quantity that varies from row to row but is constant

within a row and that b, varies from column to column but is constant

i
within a column. Applying the rules regarding the summation symbols we

have

§Yij - §(Xij+ai+bj+c) o

- ‘ o
?xij + Nai + gb 4+ Nc

L(X. +a_+b +c)
i AT e A

™~
-
]

= ixij + iai + ij+Kc

1

1

]
"

IZ(X, ,+a,+b +c)
13 ij 14 i1 1 73

= ZIX,, + NLa, + KEb, + KNc
i S I T

Illustration 1.3. We have noted that Z(XiYi) does not equal
(Exi)(ZYi). (See (1) and (2) in Exercise 1.3, and (5) on Page 12). But,

LZX, Y, = (in)(ZY ) where i = 1, 2,...,K and j = 1, 2,...,N. This becomes

g1 4

clear if we write the terms of LIX,Y, in matrix format as follows:

T
Row Totals
XY, + XY, b+ XY : X,I¥,
XY XY, e XY X,TY,
+ xx;l + XY, toot XYy o= i);xin XY
IX,IY
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The sum of the terms in each row is shown at the right. The sum of these

row totals 1is XlZYj +.. .+ XKZYj = (X1+...+ XK)ZYj = ZXiZYj. One could

get the same final result by adding the columns first. Very often inter-
mediate summations are of primary interest.
Exercise 1.11. Verify that ZZXiYJ = (in)(ZY

3
i3
X and Y in Exercise 1.3. In Exercise 1.3 the subscript of X and the sub-

) using the values of

script of Y vere the same index. In the expression IIX Y, that is no longer

13 13

the case.

Exercise 1.12. Prove the following:

KN K K N N

(1) Iz a/X .+b )2 - Zaz gxz + 2Za, Ib X . + KZb2
Ui S S IO S & i S I S IS
KN _ , kK N, K _,
(2) iﬁai(xij_xi') = iai §xij - Niaixi_
: KN _ _ K N K _ _
(3) Eai(xﬁ-xi,)(vij-yi.) = iai :z]xinij - Niaixi_'x'i'

1.5.2 HIERARCHAL OR NESTED CLASSIFICATION
A double index does not necessarily imply that a meaningful cross

clagsification of the data can be made. For example, X , K might represent

ij
the value of X for the jth farm in the ith county. In this case, } simply
identifies a farm within a county. There is no correspondence, for example,

between farm number 5 in one county and farm number 5 in another. In fact

the total number of farms varies from county to county. Suppose there are

K counties and Ni farms in the ith county. The total of X for the ith
Ny K
county could be expressed as X, =L X . In the present case IX is
i. j 13 i i3
KNy

meaningless. The total of all values of X is LI Xij .
ij
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When the classification is nested, the order of the subscripts
(indexes) and the order of the summation symbols from left to right should
be from the highest to lowest order of classification. Thus in the above

example the index for farms was on the right and the summation symbol

KN
involving this index is also on the right. In the expression ZZiX

i’
i3
summation with respect to i cannot take place before summation with regard
* to j. On the other hand, when the classification is cross classification

the summations can be performed in either order.

nat . . ,

“ "In the example qf'Kxﬁounties‘and N, farms in the ith county, and in
simileﬁ examples, youwmay‘ﬁhipk‘gf the data as being arranged in rows (or
columns): ;

. Of :Emi i3 oo D g v,y y
R TS PPN
U e 1
[ - B DI I S VI I .
e imA A ﬁﬂXZI’ xzz! P iyt !AXZNZi ' - r
% Xz oo Ko
§ ]
K Here are two double sums taken apart for inspection:
KN N
‘ w i, - )% =t K )2 et gK(xK X )2 (1.5)
i 1j lj . e j ..
h| ] ]
N e 2 .2 - .2 - .2
T (xlj—x,,) = (XK DT e Ky XD
i | - 1
Equation (1.5) is the sum of squares of the deviations, (Xij—i__), of all

K

values of xij from the overall mean. There are IN, values of Xi

, and
i 1 i



24
KN
zzix
o g 1
X, = X . If there was no interest in identifying the data by counties,
IN

11 .
a single index would be sufficient. Equation (1.5) would then be Z(Xi-i)z.
i
Ky . = .2 oy
( )
\'
N o = .2 s 12 S L2
3 1
N
With reference to Equation (1.6) do you recognize 21(X1j-il.)2? It involves
‘ 3
only the subset of elements for 'which 1'= 1, namely X,., X,.,... X, - Note
w 11 1; 1N1
that il- is the average value of X in this subset. Hence, Zl(xlj-il.)z is
W 3

the sum of the squares of the deviations of tﬂerx's.in this subset from the

subset mean. The double sum is the sum of K terms and each of the K terms

is a sum of squares for a subset of X's, the index for the subsets being 1.
Exercise 1.13. Let X,, represent the value of X for the jth farm in

1]
the ith county. Also, let K be the number of counties and Ni be the number

of farms in the 1Ch county. Suppose the values of X are as follows:

X,=3 X,=1 X33

X21 -4 X22 =6

X300 Xy =3 X5yl Xy =2

Find the value of the following expressions:

Expression Answver
K
(1) ZN1 9

i



‘‘‘‘‘‘‘‘

Expression (Continued)
(2) X
(3) X, and X
(4)
h|
) X,

6) X _, %, and %

(N

KN K
(8) z(zixij)z or'EXi_
i] i
s 2
ij.xa -)

1

(9) Iz (x
13

"o I, X )

(11)

(12) Iz (x, ,-X,.))

(13) ZNi(xi--i--)

K
() ¢ —— -
i

(15) IN,X5 -NX

Lt . T )
i ool Y fe..

Answer
27

27 3

3

TR RRCES S L T L

SRR T P

“2554 , PRILI

oM e

4o o
T | . -
aroe |1 P .,

36.‘ Ta ‘o

8) 2, ax\d 14 for i-l’ 2’
and 3 respectively

24

12

25




26

Expressions (14) and (15) in Exercise 1.13 are symbolic representations
of the same thing. By definition

N KN, K
Iy =Xy, » Xy =X, , and IN) = N
hE ij 1

Substitution in (14) gives

»

P X

i

. . .. o xf_ =2

Also by definition = ~— =X, £ and -— = X . Therefore m— = N X  and
Ni i- N .. Ni > i

R

X2, =2 K -2 -2
w - . Hence, by substitution, Equation (1.7) becomes ZNiXi.— NX_.
i

Exercise 1l.14. Prove the following: W

KN K>
W 'z, x, = x),

13 1

RN, _
(2) iz Ry, (KX, ) =0

J

K _ K,
(3) N, (X, X ) X -NK

1 - i i LN 3

Note that this equates (13) and (15) in Exercise 1.13.
The proof is similar to the proof called for in part (5)
of Exercise 1.5.

2 ix PN b2
(4) Iz (a ) -Za b 2zabx + IN,b
i 1743 by {1 F 137544 T T

1.6 THE SQUARE OF A SUM
In statistics, it is often necessary to work algebraically with the

square of a sum. For example,

2 2 2
(ZXi) = (X +X2+...+XN) X1+X1X2+...+X2+X2X +...+XN+XNX1 coe
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The terms in the square of the sum can be written in matrix form as

follows:

xlxl Xlxz . 1%y cee XlXN

X, X XX oo X, X “cee XZXN

X X X, X e XX cas xiXN

ST oS SRR s DI & |

The general term in this matrix is xix where Xi and Xj come from the same
| ! g . : o : 1“ “ '

set of X's, namely, Xl,...,XN. Hence, 1 and | are indexes of the same set.
Note that the terms along‘the‘main diagonal are the squares of the value

of X and could be writtenhgswzxi . That is, on the main diagonal i = j

and xixj = xixi = Xi « The remaining terms are all products of one value

of X with some other value of X. For these terms the indexes are never
equal. Therefore, the sum of all terms not on the main diagonal can be

expressed as ZXiX where 1 # j is used to express the fact that the summa-

144
tion includes all terms where i is not equal to j, that is, all terms other

than those on the main diagonal. Hence, we have shown that (in)2 =

ZXZ + IX. X, .

Lo gt

Notice the symmetry of terms above and below the main diagonal:

xlxz = XZXI,X1X3 = X3X1 » etc. When symmetry 1ike‘this occurs, instead of

" IX,X, you might see an equivalent expression 2Z X,X, . The sum of all
1™y i3

i#j i<j

terms above the main diagonal is I X,X, . Owing to the symmetry, the sum

1<j i
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of the terms below the main diagonal is the same. Therefore, I Xin -
1]
2 XX, .
i<j 173
R 4 2 [
Exercise 1.15. Express the terms of [ in] = [X +YZ+X +X4]

: i=1
matrix format. Let Xl =2, Xz = 0, X3 = 5, and Xa = 7. Compute the values
i , 25 XX, , and [zxi]2 . Show that [IX,]% = xxi +2I XX .

1<] 1<y 1

of IX

An important result, which we will use in Chapter 3, follows from the

fact that

2 o Sy
[ZX ] - ZX + 2 XX o (1.8)
1 . i#) 1 j )
Cith ) cob

Let X, -”Yi-?. Substituting (x, -Y) for xi

t

in Equation 1.8 we have
[Z(Y -Y)] = Z(Y -Y) + L (Y -Y)(Y -Y)
1944

We know that [Z(YV-T)T = 0 because Z(Y —Y) - 0 Therefore,

) g 0

Z(Yi—Y) + I (Y -Y)(Yj
Yy i*j
It follows that I (Y ) (Y,-Y) = -I(Y -Y) (1.9)
i | 3
Exercise 1.16. C&nsider
1 s s2
i, T (Y -Y)(Y -9 = Ly, - ¥, + ¥9
| g L3 gy 11 Ty T
: = = 52
) = ZYY ~-YZIY -YZY + LY
13 13 a0 agg 3 gy

Do you agree that I ?2 - N(N—l)? ?7 With reference to the matrix layout,
14}

Y~ appears N2 times but the specification is i ¥ j so we do not want to
count the N times that ?2 is on the main diagonal. Try finding the values

of I Xi and I Xj and then show that
i¥j 13
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z (Yi-?)(vj-f) - IYY - NON-1)F2

i=j 1¥3 1

Hint: Refer to a matrix layout. In I Yi how many times does Yl appear?
. . 149
Does Y, appear the same number of times?

2
1.7 SUMS OF SQUARES

For various reasons statisticians are interested in components of
variation, that is, measuring the amount of variation attributable to each
of more than one source. This involves computing sums of squares that
correspond to the different sources of variation thdt‘are;of‘intereat;

We will discuss a simple ‘example of, nested«classification and a simple
example of cross classification. ‘ X T

1.7.1 NESTED CLASSIFICATION  _ ) ! - L

T -

SR ch, LA
To he somewhat specific,reference is made to the example of K counties

~

and Ni farms in the’ iFh-county. - The' sum of_;hersquares'of the deviations

of Xij and i_. can be divided into two pafts as shown bf the following

formula: T
KNi - 2 K KN 2
ZL (xij-x._) = XNi(X -X ) + ZZ (xij i°) (1.10)
1j i 1]

The quantity on the left-hand side of Equation (l.lO)'ic called the
total sum of squares. In Exercise 1.13, Part (9), the total sum cf squares
was 36. |

The first quantity on the right~hand side of the equation involves the .
squares of (ii_-i..),which are‘deviatio?s cf the clagss means from the overi
all mean. It is called the between ciass sum of squares cr with reference
to the example the between county sum of‘squares. In Exercise 1.13,

Part (13), the between county sum of squares was computed. The answer was

12.
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The last term is called the within sum of squares because it involves
deviations within the classes from the class means. It was presented
previously. See Equation (1.6) and the discussion pertainiﬁg;to it. 1In
Exercise 1.13, the within class sum of squares was 24, which was calculated
in Part (12). Thus, from Exercise 1.13, we have the total sum of squares,
36, which equals the‘Befween, 12, plus tﬁe within, 24. This ;erifies
Equation (1.10).

The proof of Equaiion 1.10 is eas& if one gets startedlzgrrectly.
Write xij—i" - (X -i ) +(i -i .). This simple technique of adding and
subtracting i +divides the deviation (xij X .) into two parts. The proof -
proceeds as follows: -

KN, ‘ >

2 2
IX (x X, = sI[(x gD (x X )1 e
g, M7 T 13 SR
= v s N = = 2
- §§[(xij—x )2 ***2(Xij'x1->‘x1-'x--)§f &, X, ).
v - EI(X; X ) + zzz(xij X, V& K )+ LD(X, X,.)
1) ij 13 ‘
KNi -
Exercise 1.17. Show that II (Xi -X; )(Xi =X, ) =0
ij j . .
KN, S, K .
and that ZZ (X =X )" =IN(X -X )
11 .o i R T

Completion of Exercise 1.17 completes tﬁé'%roof.

Equation (1.10) 1is written in a form which displays its meaning rather
than in a form that is most useful for computational purposes. For computa-
tion purpoges, the following relationshiﬁs are commonly used:

KN

Total = zrt(x, X )% = s1x?

2 2
13 1j 19 j NX,,
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K

Between = IN, (X, -X )2 - IN X2 -NX2
i i- .e i i- .s
i i
' KN, 2 7
Within = LI <xij 1 ) szi -IN X
14 TN
N KN
« zix1j zzixij
where N = IN, , X -l—-—-,and)-( 5 B
‘ i i. N .- N
i i
KNy 2
Notice that the major part of arithmetic reduces to calculating LI Xij ’
1]
K -2 =2
zuixi. » and NX' . There are variations of this that one might use. For
K Xi‘ K -2
example, one could use I N instead of IN X .
i1 i

Exercise 1.18. Show that

KN
rzt oy, X )2 = zzxfj N %2
1] 1] i
A special casé that is useful occurs when Ni = 2. The within sum of
squares becomes
K2 _ o, K 9
ZZ(Xij—Xi_) = Z[(Xil 1. ) + (X12 i') ]
ij i
X, +X
Since Xi. = —iii—ig it is easy to show that
= 2 1
XX )7 =5 KypXyp)
2 1 2
and (XX, )" = 3 (%)%, )

Therefore the within sum of squares is

1 2
2 (xil'xiz)

Il I

which is a convenient form for computation.
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1.7.2 CROSS CLASSIFICATION
Reference is made to the matrix on Page 15 and to Exercise 1.8. The
total sum of squares can be divided into three parts as shown by the

following formula:

KN _'21<__2N_ KN _
zx(xij-x__) = NZ(xi_-x__) + KZ(X j-x ) + XZ(Xij i x.j+x_.) (1.11)
ij i h ij

s g e Turn to Exercise 1.8 and find the total sum of squares and the three

parts. They are:

Sum of Squares

S b Co

Total 78

Rows 18 'fg“
Columns 54
Remainder 6

The three parts add to the total whic;iverifies Equation (1.11). 1In
Exercise 1.8, the sum of squares ca;led remainder was computed directly
(see Part (10) of Exercise 1.8). 1In praﬁtice, the remainder sum of squares
is usually obtained by subtracting the row and column sum of squares from
the total.

Again, the proof of Equation (1.11) is not difficult if one makes the

right start. In this case the deviation, (X -i._), is divided into three

i}
parts by adding and subtracting ii- and i-j as follows:
(Xij_x--) = (xi.-X..) + (x.j-x_.) + (Xij 1. -X j+X ) (1.12)

Exercise 1.19. Prove Equation (1.11) by squaring both sides of Equa-

tion (1.12) and then doing the summation. The proof is mostly a matter of
showing that the sums of the terms which are products (not squares) are zero.

KN

For example, showing that 22(X X )(X,.-X, X 4X ) =0.
ij ’e ij i‘ lj b
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CHAPTER I1. RANDOM VARIABLES AND PROBABILITY

2,1 RANDOM VARIABLES

The word “random" has a wide variety of meanings. Its use in such

terms as "'random events, random variable," or "random sample," however,
implies a random process such that the probability of én event occurring

is known a priori. To select a random sample of elements from a population,
tables of random numbefs are used. Tﬁere are various ways of using such
tables to make a random selection so any given element will have a specified
probability of being selected. ..

The theory of probability sampling is founded on the concept of a
random variable which is a,variable that, by chance, might equal any one
of a defined set of values.::The value of a random:variable on any partic-
ular occasion is determined by a random process:in such a way that the
chance (probability) of its being equal to any specified value in the set
is known. This is in accord with the definition of a probability sample
which states that every element of the population must have a known prob-
ability (greater than zero) of being selected. A primary purpose of thisw
chapter is to present an elementary, minimum introduction or review of
probability as background for the next chapter on expected values of a
random variable. This leads to a theoretical basis for sampling and for

evaluating the accuracy of estimates from a probability-sample survey.

In sampling theory, we usually start with an assumed population of N

. elements and a measurement for each element of some characteristic X. A

typical mathematical representation of the N measurements or values is

Xl,...,Xi,...,XN where Xi is the wvalue of the characteristic X for the ith

element. Assoclated with the ith element is a probability Pi’ which is the

probability of obtaining it when one element is selected at random from the
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set of N. The Pi's will be called selection probabilities. If each
1 '
{1 =N The Pi s need not be
equal, but we will specify that each Pi>0' When referring to the probability

element has an equal chance of selection, P

of X being equal to X, we will use P(Xi) instead of P

i i°
We need to be aware of a distinction between selection probability

and inclusion probability, the latter being the probability of an element

A
Gty

LA ‘ being included in a sample. In this chapter, much of the discussion is

oriented toward selection probabilities because of its relevance to finding
expected values of estimates from samples of various kinds.

Definition 2.1. A random variable is a variable that can equal any

value Xi, in a defined set, with alprobability P(Xi).

When an element is selected at random from a population and a measure-
ment of a characteristic of it is made, the value obtained is a random
variable. As we shall see later, if a sample of elements is selected at
random from a population, the sample average and other quantities calculated
from the sample are random variables.

Illustration 2.1, One of the most familiar examples of a random

.;y;‘ variable is the number of dots that happen to be on the top side of a die

| when it comes to rest after a toss. This also illustrates the concept of
probability that we are interested in; namely, the relative frequency with
which a particular autcome will occur in reference to a defined set of
possible outcomes. With a die there are six possible outcomes and we expect
each to occur with the same frequency, 1/6, assumiﬁg the die is tossed a
very large or infinite number of times. Implicit in a statement that each
side of a die has a probability of 1/6 of being the top side are some
assumptions about the physical structure of the die and the "randomness"

of the toss.



35

The‘additive and multiplicative laws of probability can be stated in
several ways depending upon the context in which they are to be used. 1In
sampling, ‘our intepest is‘primarily in the outcome of one random selection
or of a series of random selections that yields a probability sample.
Hence, the rules or theorems for the addition or multiplication of prob-~

abilities will be stated or discussed only in the context of probability

sampling.

2.2 ADDITION OF}RBDBABILITIES‘

-
1

. ! U L R
Assume a population of N elements and a variable X which has a value

R B L . ' ' PR D
Xi for the ith element. That is, we hgye a set of values of X, namely

R N

X Xi,;..,XN:M Let P seeesPyseee Py be a set of selection probabiiitiest

12" 1

where Pi is the pFoHabiiity of selecting the 1th element when a random
el Lot - v Corsamtgun
selection is made. We specify that each Pi must be greater than zero and

DI BT 2 .
dlhnsgH

[

T - . . ool
N . ‘
that ZPi = ]. When an element is selected at random, the probability that
i

it is either the ith element or the jth element 1s P, + P This addition

1755

Tule can be stated more generally. Let Ps be the sum of the selection

probabilities for the elements in a subset of the N elements. When a random
selection is made from the whole set, PS is the probability that the element
selected is from the subset and 1-Ps is the probability that it is not from

the subset. With reference to the variable X, let P(Xi) represent the

probability that X equals X, . Then P(Xi)+P(x ) represents the probability

i 3

or X,; and PS(X) could be used to represent the

i 3
probability that X is equal to one of the values in the subset.

that X equals either X

Before adding (or subtracting) probabilities one should determine
whether the events are mutually exclusive and whether all possible events

have been accounted for. Consider two subsets of elements, subset A and
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subset B, of a population of N elements. Suppose one element is selected
at random. What is the probability that the selected element is a member
of either subset A or subset B? Let P(A) be the probability that the
selected element is from subset A; that is, P(A) is the sum of the selec-
tion -probabilities for elements in subset A. P(B) is defined similarly.

If the two subfets are mutually exclusive, which means that no‘element is
in both subsets, the probability that the element selected is from either
subset A or subset B is P(A) + P(B). ;If some elements are in both subsets,:
see Figprg 2.1, then gyent A (which ig the selected element being a member

" of subset'A) and“event BOwhichlis thersélec;ed element beiné{a member of

T -

subset B) are not mutually exclusive events. Elements included in both

porl I | - , [

subsets are counted once in P(A) and once in P(B) Therefore we must

[ P ¢ - -

subtract P(A,B) from P(A) + P(B) where P(A B) is the sum of the probabilities

BT 4 S P

for the elements that belong to both subset A and subset B. Thus,

P(A or B) = P(A) + P(B) - P(A,B)

Figure 2.1

To summarize, the additive law of probability as used above could be
stated as follows: If A and B are subsets of a set of all possible outcomes

that could occur as a result of a random trial or selection, the probability
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that the outcome is in subset A or in subset B is equal to the probability
that the outcome is in A plus the probability that it is in B minus the
probability that it is 1n‘both A and B.

The additivé law of probability extends without difficulty to three
or more subsets. ﬁDraw a figure like Figure 2.1 with three subsets so that
some points are common to all three subsets.. Observe that the additive

. law extends to tﬁ;ge subsets as follows:
‘i ‘

PCA or B or C)=P(A)+P(B)+P(C)~-P(A,B)~P(A,C)~P(B,C)+P(A,B,C)

LI

9

As a case for further discussion purposes, assume a population of N
- L ‘. w‘i‘::v:".,jj / ' . ‘ Co ’ ‘
elements and two criteria for classification. A two-way classification of
the elements could be displayed in the format of Table 2.1.

Tablezifl--A:two—way classification of N elements

t ‘r',‘.,‘:! 1

f f X class f f

: Y class : : Total :

H : 1 e i ces s : :

f 1 f Nll’Pll e Nlj’Plj ces le’Pls f Nl-'Pl- f

; R : : : :
f t f Ntl’Ptl cee th’Ptj cse Nts’Pts f Nt-’Pt- f

i : Total : N.1 N.j N.s : N,P=1l =

The columns represent a classification of the elements in terms of criterion
X; the rows represent a classification in terms of criterion Y; Nij is the

! number of elements in X class j and Y class i; and P,, is the sum of the

1]
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selection pYobabilities for the elements in X class j and Y class i. Any
one of the N elements can be classified in one and only one of the t times
s cells.

Suppose one element from the population of N is selected. According
to the additive law of probability we can state that

zPij = P_j is the probability that the element selected is from
i

X class j, and
IP,,. = P is the probability that the element selected is from

Y class 1, where
LS O & A R ' 1

P is the probability that the element selected is from

(belongs to both) X class j and Y class 1.
[T R

The probabilities P-j and Pi are called mafginal probabilities.
’ ok « wporpoed o :

The probability that one randomly selected element is from X class

j or from Y-class i is P'l +P - Pij.‘(The ansver is not P_j + Pi- because

in P'j + Pi- there are Nij elements in X class j and Y class i that are

counted twice.)

-4

N
If the probabilities of selection are equal,_-Pij =-f%i , P, = —ﬁi ,
I\

and Pi- ST.

Illustration 2.2. Suppose there are 5,000 students in a university.

Assume there are 1,600 freshmen, 1,400 sophomores, and 500 students living
in dormitory A. From a list of the 5,000 students, one student is selected

at random. Assuming each student had an equal chance of selection, the

probability that the selected student is a freshman is %%%g-, that he is a
1400 1600
sophomore is -+~ 5000 ° and that he is either a freshman or a sophomore is 5000 +

1400

3000 ° Also, the probability that the selected student lives in dormitory A
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500
5000 °

a freshman or lives in dormitory A? The question involves two classifica-

is But, what is the probability that the selected student is either

tions: one pertaining to the student's class and the other to where the
student lives. The information given about the 5000 students could be

arranged as-follows:

f f Class . f
¢ : Dormitory : : Total :
: ol ¢ Freshmen Sophomores Others : ' :
v : : : :
: A : : 500 :
: Other : : 4500 :
: Total : 1600 1400 2000 5000 :

From the above format, one can readily observe that the answer to the ques-
. tion depends upon how many freshmen live in dormitory A. 1If the problem

had stated that 200 freshmen live in dormitory A, the answer would have

beeq 1600 | 500 _ 200 :
5000 © 5000 ~ 5000 °

cox Statements about probability need to be made and interpreted with
| great care. For example, it is not correct to say that a student has a
= probability of 0.1 of living in dormitory A simply because 500 students out
of 5000 live in A. Unless students are assigned to dormitories by a random
process with known probabilities there is no basis for stating a student's
probability of living in (being assigned to) dormitory A. We are consider-
ing the outcome of a random selection.

Exercise 2.1. Suppose one has the following information about a

population of 1000 farms:
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600 produce corn
500 produce soybeans
300 produce wheag
100 produce wheat and corn
200 have one or more cows
all farms that have cows also produce corn Vi

200 farms do not produce any crops

One farm is selected at random with equal probability frem the list
of 1000. What is the probability that the selected farm, -
(a) produces corn? Answer: 0.6
(b) does not produce wheat?
(c) produces corn but no wheat? Answer: 0.5
(d) produces corn or wheat but‘ﬁgf both?
(e) has no cows? Answer: 0.8
(f) produces corn or soybeans?
(g) produces corn and has no cows? Answer: 0.4 a
(h) produces either corn, cows,'or both?
(i) does not produce corn or wheat?

One of the above questions cannot be answered.

Exercise 2.2. Assume a population of 10 elements and selection

probabilities as follows:

Element Ei El Element fi zl
1 2 .05 6 11 .15
2 7 .10 7 2 .20
3 12 .08 8 8 .05
4 0 .02 9 6 .05
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One_element is selected at random with probability Pi'
Find:
(a) P(X=2),. the probability that X = 2,
(b) P(X>10), the probability that X is greater than 10.
(c) P(X<2), the probability that X is equal to or less than 2.

(d) P(3<X>10), the probability that X is greater than 3 and less
than 10

(e) P(X<3 or x>10), the probability that X is either equal to or less
than 3 or is equal to or greater thanm 10.

VR '
A

Note. The answer to (d) and the answer to (e) should add to 1.

o ISR I I 1A [T ‘ . : : | )
So far, we have been discussing the probability of an event occurring as
cyto, 1,1 "B" , L y

a result of a single random selection. When more than one random selection
) {

occurs simultaneously or in succession the multiplicative law of prob-
Jeabzeay adT 07T W A

ability is useful.

2.3 MULTIPLICATION OF PROBABILITIES
Assume a population of N elements and selection probabilities
N

P.yeeesP,see.,P . Each P, is greater than zero and IP, = 1. Suppose
1 1 N i 1 i

two elements are selected but before the second selection is made the
first element selected is returned to the population. In this case the
outcome of the first selection does not change the selection probabilities
for the second selection. The two selections (events) are independent.
The probability of selecting the ith element first and the jth element
second 1is, Pin, the product of the selection ptobabilities P1 and Pj'

If a selected element is not returned to the population before the next

selection is made, the selection probabilities for the next selection are

. changed. The selections are dependent.
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The multiplicative law of probability, for two independent events
A and B, states that the joint probability of A and B happening in the
order A,B 1s equal to the piobability that A happens times the prob-
ability that B happens. In equation form,P(AB) = P(A)P(B). For the
order B,A, P(BA) = P(B)P(A) and we note that P(AB) = P(BA). Remember,
independence means that the probability of B happening is not ‘affected
by the occurrence-of A and vice versa. The multiplicative law extends
to any number of independent‘events; Thus, P(ABC) = P(A)P(B)P(C).

Co g

For two dependent events A and B, the multiplicative law states that

H b . [

the joint probability of A and B happening in the order A,B is equal to

1y L R T '».LIJlIw " T

the probability of A happening timés the probability that B happens under

4 g L ¥ R R L
the condition that A has already happened. In equation form P(AB) =
TN TIPS 3 & SN - I DR R N P

P(A)P(B|A), or for the order B,A we have P(BA) = P(B)P(AIB) The vertical

bar can usually be translated as "given' or "given that." The notation on

the left of the bar refers to the event under consideration and the nota-
tion on the right to a cendition nnder which ;he event can take place.
P(B|A) is called conditional probability and could be read "the prob-
ability of B, given that A has already happened,” or simply "the prob—
ability of B given A." When the events are independent,P(BlA) = P(B);
that is, the conditional probability of B occurring is the same as the
unconditional probability of B. Extending the multiplication rule to a
series of three events A,B,C occurring in that order, we have P(ABC) =
P(A)P(BIA)P(CIAB) where P(CIAB) is the probability of C occurring, given
that A and B have already occurred,

2.4 SAMPLING WITH REPLACEMENT

When a sample is drawn and each selected element is returned to the

population before the next selection is made, the method of sampling is

I
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called "sampling with replacement." In this case, the outcome of one
selection does not change the selection probabilities for another
selection.

Suppose a sample of n elements is selected with replacement. Let the

values of X in the sample be xl,xz,...,xn where Xy is the value of X

obtained on the first selection, x2 the value obtained on the second

selection, etc. . Notice that X is a random variable that could be equal

to any value in .the population set of- values Xl,xz,...,XN, and the prob-

ability that x, equals Xi is P The ,same statement applies to Xy5 etc.

1 i’
Since the selections are independent,the probability of getting a sample .
N i,

of n in a particular order is the product of the selection probabilities

namely, p(x )p(x Yeoap(x ) where p(x.) is the P, for the element selected
gww;ts sfap juil 1.4. ETAN - I .,Lii.um; 3

on the first draw, p(x ) 1is the Pi for the element selected on the second

.ﬁJ.J PP Py > " R ¥

draw, etc.

b . PR . # i
AT [P S 'f”” L lp,g ‘ gitovhoun,

Illustration 2.3. As an illustration, consider a sample of two

elements selected with equal probability and with replacement from a popu-

lation of four elements. Suppose the values of some characteristic X for

the four elements are X 2, X3, and Xa. There are 16 possibilities:
Xl,Xl X2,X1 X3,Xl X4’xl
XXy XXy, X5, 4°%2
XXy XXy XgXy o X, Xg
Xl,X4 XZ’X4 X3,X4 xa,xa

In this illustration p(xl) is always equal to-% and p(xz) is always %-.

Hence each of the 16 possibilities has a probability of ( )C—) 16 .
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Each of the 16 possibilities is a different permutation :h;ﬁ‘could
be regarded as a separate sample. However, in practice (@s we.are not
concerned about which element was selected first or second) it is more
logical to disregard the order of selection. Hence, as possible samples

and the probability of each occurring, we have:

Sample Probabilit Sample Probabili
Sampie Zrobadbility sample
Xl, 1 1/16 xz,x3 1/8 |
X, X, 1/8 X,»X, - 1/8 - o
. X S I AL
xl,x3 1/8 X3,X3 1/16'
X, X, . 1/8 X, X,' 18 R
‘ - R B R
xz,xz 1/16 | XA’XA 1/16 .

. o ‘ i )
Note that the sum of the probabilities is 1. That must always be the

case if all possible gsamples have Been lisf;& with the correcf ﬁ?gb—‘r
abilities. Also note that, since the probability (relative fréquency
of occurrence) of each sample is known, thé:average for eachééample is’
a random variable. In other words, there were 10 possible s;ﬁp1§§,4and -
any one of 10 possible sample averages could have occurred with the
probability indicated. Tﬁis'is a 'simple 1ilﬁstration of the faét that
the sample average satisfies the definition of a random variable. As
the theory of sampling unfolds, we will be examining the properties of
a sample average that exist as a result of its being a random variable.

Exercise 2.3. With reference to Illustration 2.3, suppose the

1 3

1 . 1
probabilities of selection were Pl 3 Pz T P3 8’ and P4 Z

Find the probability of each of the ten samples. Remember the sampling

is with replacement. Check your results by adding the 10 probabilities.
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The sum should be 1. Partial answer: For the sample composed of elements
Tt

2 and 4 the probability is (“9(—9 + ( )('0 1
N

2.5 SAMPLING WlTHOUT REPLACEMENT

6.

When a seleeted element‘is not returned to the population before the
next selection is made, the sampling method is called sampling without
replacement. In this case, the selection probabilities change from one
draw to the next; that is, the selections (events) are dependent.

As above, assume a population of N elements with values of some

v characteristic X equal to X 2""’XN' Let the selection probabilities

for the first selection be Pl,r.., i,.,,PN where each Pi>0‘and ):Pi = 1,

Suppose three elements are selected without replacement. Let X1 Xy and

be the values of X obtained on the first, second, and third random

t LIV I

= X

X3
draws, respectively. What is the probability that xl = XS, x, 6°
X ) represent this probability,which(is the prob-

and
- ?
X4 X7. Let P( 5 6’
ability of selecting elements 5 6, and 7 in that order.
According to the multiplicative probability law for dependent events,
( 5Xg2Xp) = chs)P<x61x5>P<x7|x5, Xg) |

5.
abilities (after element 5 is eliminated) must be adjusted so they add

It is clear that P(XS) = P For the second draw the selection prob-

to 1. Hence, for the second draw the selection probabilities are

P P P P P P P

1 2 3 4 6 N 6
o T s T » T » Top— seees 7—5— That is, P(X |X.) = 75— .
1 P5 1 P5 1 P5 1 P5 1 P5 1 PN 6'"5 1 P5
P7
Similarly, P(.'X7|X5,X6) = -i-_—P—s-:I;'; .

P P
6 7
Therefore, P(XS’XG’X7) = (PS)(l_PS)(l_PS_P )] (2.1)

6
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P P
5 7 .
Observe that P(X6,X5,X7) (P6)(1_P6)(1_P6_P5). Hence, P(XS,X6,X7) o
P(X6,X5,x7) unless P5 - P6' In general, each permutation of n elements

has a different probability of occurrence unless the P, 's are all equal.

i
To obtain the exact probability of selecting a sample composed oflele-
ments 5, 6, and 7, one would need to compute the probability for each of
the six possible permutations and get the sum of the six probabilities.

Incidentally, in the actual process of selection, it is not neces-
sary to compute a new set of selection probabilities after each selection
is made. Make eaéh selection in the same way that the first selection
was made. if Qﬁ élément 1s selected which has already been drawn, ignore
the random number and continue the same process of random selection
until a new element is drawn.

As indicafed by the verylbrief‘discussion in this section, the
theory of sampiing withouf reblacement and with unequal probability of
selection can be very complex. However, books on sampling present ways
of circumventing the complex problems. In fact, it is practical and
advantageous in many cases to use unequal probability of selection in
sampling. The probability theory for sampling with equal probability
of selection and without replacement is relatively simple and will be
discussed in more detail.

Exercise 2.4. For a population of 4 elements there are six possible
1

samples of two when sampling without replacement. Let P1 = %3 P2 -3

P3 --%, and P4 - %3 List the six possible samples and find the prob-
ability of getting each sample. Should the probabilities for the six

samples add to 1? Check your results.
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Exercise 2.5. Suppose two elements are selected with replacement

and with equal probability from a population of 100 elements. Find the
probability: (a) that element number 10 is not selected, (b) that ele-
ment number 10 is selected only once, and (c) that element number 10 is
selected twice? As a check, the three probabilities should add to 1.
Why? Find the probability of selecting the combination of elements 10

and 20.

Exercise 2.6. Refer to Exercise 2.5 and change the specification

"with replacement" to "without replacement. Answer the same questions.

Why is the probability of getting the combination of elements 10 and 20

Podoes

greater than it was in Exercise 2, 5’
‘ ) R

2.6 SIMPLE RANDOM SAMPLES
(I ' N TR il

In practice, nearly all samples are selected without replacement.
Selection of\a randomwsample'of n elements, with equal probability and
without replacement, from a population of N elements is called simple
random sampling (srs). One element must be selected at a time, that is,
n separate random selections are reeuired.

First, the probability of getting a particular combination of n
elements will be discussed. Refer to Equation (2.1) and the discussion
preceding it. The Pi's are all equal to %-for simple random sampling.
Therefore, Equation (2.1) becomes P(xs,xé,x7) ( )( )( All per-
mutations of the three elements 5, 6, and 7 have the same probability of

occurrence. There are 3! = 6 possible permutations. Therefore, the

probability that the sample is composed of the elements 5, 6, and 7 is

(L(2)(3)
N(N-1) (N-2) °

probability of occurrence.

Any other combination of three elements has the same
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In general, all possible combinations of n elements have the same
chance of selection and any particular combination of n has the following

probability of being selected:
(1)(2)(3)...(n) . nI(N-n)! (2.2)
N(N-1) (N~-2)..,.(N-nt1) N! *

N!
n! (N-n)!

possible combinations (samples) of n elements. If each combination of

According to a theorem on number of combinations, there are

n elements has the same chance of being the sample selected, the probability

of selecting a specified combination must be the reciprocal of the number
. of combinations. This checks with Equation (2.2).

An important feature of srs that will be needed in the chapter on
expected values is the fact that the jth element of the popﬁlation is as
likely to be selected at the ith random draw as any other. A general‘
expression for the probabiiity that the jth element of the population is
selected at the ith drawing ié o

N-1, N-2, N-3,  N-i+l 1
S TRATS T A i+2)(N-1+1) N

(2.3)

Let us check Equation 2,3 for 1 = 3. The equation becomes

EDh G 1":«-2’ 3

The probability that the jth element of the population is selected at the
third draw is equal to the probability that it was not selected at either
the first or second draw times the conditional probability of being
selected at the third draw, given that it was not selected at the first

or second draw. (Remember, the sampling is without replacement). Notice

that Eﬁl is the probability that the jth element is not selected at the
first draw and<§:£ is the conditional probability that it was not selected

N-1

at the second draw. Therefore, (N -1

)( ) is the probability that the j
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element has not been selected prior to the third draw. When the third
draw is made, the conditional probability of selecting the jth element

is ﬁ%f . Hence the probability of selecting the jth element at the third
Yy
5 -

To summarize, the general result for any size of sample is that the

draw is (Nal)(g:i)(Niz) = This verifies Equation (2.3) for i = 3.

jth element in a population has a probability equal to %-of being selected

at the ith drawing. It means that Xy (the value of X obtained at the ith

draw) is a random variable that has a probability of %-of being equal to
any value of the set Xl,...,XN.

What probability does the jth element have of being included in a
sample of n? We have just shown that it has a probability of %-of being
selected at the 1th drawing. Therefore, any given element of the popula-
tion has n chances, each equal to %-, of being included in a sample. Tﬂe-
element can be selected at the first draw, or the second draw,..., or the
nth draw and it cannot be selected twice because the sampling is without
replacement. Therefore the probabilities, %-for each of the n draws, can
be added which gives %-as the probability of any given element being
included in the sample.

Illustration 2.4. Suppose one has a list of 1,000 farms which includes

some farms that are out-of-scope (not eligible) for a survey. There is no
way of knowing in advance whether a farm on the list is out-offscope. A
simple random sample of 200 farms is selected from the list. All 200 farms
are visited but only the ones found to be in scope are included in Fhe
sample. What probability does an in-scope farm have of being in the sam-

ple? Every farm on the list of 1000 farms has a probability equal to %
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of being in the sample of 200. All in-scope farms in the sample of 200

are included in the final sample. Therefore, the answer is 5

Exercise 2.7. From the following set of 12 values of X a srs of

three elements is to be selected: 2, 10,'5, 8,1, 15, 7, 8, 13, 4, 6,
and 2. Find P(§312) and Pt3<§<12). Remember that the total possible
numb;t pf samples of 3 can readily be obtained by formula. Since every
possible sample of three is equally likely, you can determine which sam-

ples will have an §§3 or an 5312 without listing all of the numerous

3 . p(3<3) = 2 . - = 208
320 P(x<3) 290 P(3<x<12) 230"

2.7 SOME EXAMPLES OF RESTRICTED RANDOM SAMPLING

possible samples. Answer: P(§312) =

There are many methods other -than srs that will give every element
an equal chance of being in ghe sample, but some combinations of n ele-
ments do not have a chance of being the sampie selected unless srs is
used. For example, one might take every kth element beginning from a
random starting point between 1 and k. This is called systematic sam-
pling. For a five percent sample k would be 20. The first element for
the sample would be a random number between 1 and 20. If it is 12, then
elements 12, 32, 52, etc., compose the sample. Every element has an
equal chance, %6 » of being in the sample, but there are only 20 com-
binations of elements that have a chance of being the sample selected.
Simple random sampling could have given the same sample but it is the

method of sampling that characterizes a sample and determines how error

due to sampling is to be estimated. One may think of sample design as a
| matter of choosing a method of sampling; that is, choosing restrictions

to place on the process of selecting a sample so the combinations which
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have a chance of being the sample selected are generally '"better" than
many of the combinations that could occur with simple random sampling.

At the same time, important properties that exist for simple random sam-
ples need to be retained. The key properties of srs will be developed in
the next two chapters.

Another common method of sampling involves classification of all
elements of a population into groups called strata. A sample is selected
from each stratum. Suppose Ni elements of the population are in the 1th
stratum and a simple random sample of n, elements is selected from it.
This is called stratified random sanpling. It is clear that every ele-

Pt ' n

ment in the i th stratum has a probability equal to Ei of being in the
n i

sample. If the sampling fraction, Ni , 1s the same fqr all strata,
1 oo d ' o R :. i ! v n
every element of the population has_an“equal chance, namely ﬁl , of
' o ‘ i
being in the sample. Again every element of the population has an equal

chancewof selection and of being in the sample selected, but some combi-
nations that could occur when the method is srs cannot occur when
stratified random sampling is used. o
So far, our discussion has referred to the selection of individual
elements, which are the units thet data pertain to. For sampling purposes
a population must be divided into parts which are called sampling units.
A sample of sampling units is then selected. Sampling units and elements
could be identical. But very often, it is either not possible or not
practical to use individual elements as sampling units. For example,
suppose a sample of households is needed. A list of households does not

exist but a list of blocks covering the area to be surveyed might be avail-

able. 1In this case, a sample of blocks might be selected and all households
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within the selected blocks included in the sample. The blocks are the
sampling units and the elements are households. Every element of the
population.should belong to one and only one sampling unit so the list of
sampling units will account for all elements of the population without
duplication or omission. Then, the probability of selecting any given

element is the same as the probability of selecting the sampling unit

>i‘
N

that it belongs to.

e

™ -,j ,wr
’ ) Illustration 2.5. Suppose a population is composed of 1800 dwelling

units located within 150 well—defined blocks. Theré are several possible
sampling plans. A srs of 25 blocks could be‘selected and every dwelling
unit in the selected blocks could be inclﬁded in the sample. 1In this
case, the sampling fraction is %-and every dﬁelling unit has a p&obability
of %-of being in the sample. 1Is this a srs of dwelling units? No, but
one could describe the sample as a random sample (or a probability sample)
of dwelling units and state that every dwelling unit had an equal chance
of being in the sample. That is, the term "simple random sample" would
apply to blocks, not dwelling units. As an alternative sampling plan, 1if
there were twelve dwelling units in each of the 150 blocks, a srs of two
dwelling units could be selected from each block. This scheme, which is an
example of stratified random sampling, would also give every dwelling unit
a probability equal to l—of being in the sample.

6
Illustration 2.6. Suppose that a sample is desired of 100 adults

living in a specified area. A list of adults does not exist, but a list
of 4,000 dwelling units in the area is available. The proposed sampling
i plan is to select a srs of 100 dwelling units from the list. Then, the

field staff is to visit the sample dwellings and list all adults living
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in each. Suppose there are 220 adults living in the 100 dwelling units.
A simple random sample of 100 adults is selected from the 1list of 220.
Consider the probability that an adult in the population has of being in
the sample of 100 adults.

Parenthetically, we should recognize that the discussion which
follows overlooks important practical problems of definition such as the

e 3 s definition of a dwelling unit, the definition of an adult, and the defini-

tion of living in a dwelling unit. However, assume the definitions are
. clear, that the list of dwelling units is complete, that no dwelling is
on the list more than once, and that no ambiguity exists about whether !
an adult lives or does not live in a particular dwelling unit. Incom-
plete definitions often leéd to inexact probabilities or ambiguity, %hat
gives difficulty in analyzing or interpreting results. The many practical
problems should be discussed in an applied course on sampling. : S
It is clear that the probability of a dwelling unit being in the
sample is %6 . Therefore, every person on the list of 220 had a chance
of %B'Of being on the list because, under the specifications, a person
lives in one and only one dwelling unit, and an adult's chance of being
on the list is the same as that of the dwelling unit he lives in.
The second phase of sampling involves selecting a simple random
sample of 100 adults from the list of 220. The conditional probability
of an adult being in the sample of 100 is %%%" %I . That is, given the
fact that an adult is on the list of 220, he now has a chance of 2 of

11
being in the sample of 100.

Keep in mind that the probability of an event happening is its rela-

tive frequency in repeated trials. If another sample were selected
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following the above specifications, each dwelling unit in the population
would again have a chance of %a»of being in sample; but, the number of
adults listed is not likely‘to be 220 so the conditional probability at
the second phase depends upon the number of dwellings units in the sample
blocks. Doés every adult have the same chance of being in the sample?
Examine the case carefully. An initial impression could be misleading.
Every adult in the population has an equal chance of being listed in the
first phase and every adult listed has an equal chance of being selected
at the second phase. But, in terms of repetition of the whole sampling -
plan each person does not have exactly the same chance of being in the -
sample of 100. The following exercise will help clarify the situation -

and is a good exercise in probability.

Exercise 2.8. Assume a population of 5 d.u.'s (dwelling units) with

the following numbers of adults:

Dwelling Unit No. of Adults
1 2
4
1
4 2
> 3

A sts of two d.u.'s is selected. A srs of 2 adults is then selected from

a list of all adults in the two d.u.'s. Find the probability that a speci-
fied adult in d.u. No. 1 has of being in the sample. Answer: 0.19. Find
the probability that an adult in d.u. No. 2 has of being in the sample.
Does the probability of an adult being in the sample appear to be related

to the number of adults in his d.u.? In what way?
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An alternative is to take a constant fraction of the adults listed
instead of a constant number. For example, the specification might have
been to select a random sample of %—of the adults listed in the first
phase. In this case, under repeated application of the sampling speci-
fications, the probability at the second phase does not depend on the
outcome of the first phase and each adult in the population has an equal

chance, (%6)(%9 - %6-, of being selected in the sample. Notice that

under this plan the number of adults in a sample will vary from sample

to sample; in fact, the number of adults in the sample is a random variable.

For some surveys, interviewing more than one adult in a dwelling unit
is inadvisable. Again, suppose the first phase of sampling is to select
a srs of 100‘dw?111ng units. For the second phase, consider the following:
When an interviewer completes the listing of adults in a sample dwelling,
he is go éelect one adult, from the list of those living in the dwelling,
at random in accordance with a specified set of instructions. He then
interviews ‘the selected adult if available; otherwise, he returns at a
time when the selected adult is available. What probability does an adult
living in the area have of being in the sample? According to the multi-
plication theorem, the answer is P‘(D)P(AID) where P°(D) is the probability
of the dwelling unit, in which the adult lives, being in the sample and
P(AID) is the probability of the adult being selected given that his
dwelling is in the sample. More specifically, P°(D) = L and P(AID) -1 s

40 ki

where ki is the number of adults in the Tl dwelling. Thus, an adult's

chance, (%6)(%~), of being in a sample is inversely proportional to the
i

number of adults in his dwelling unit.

Exercise 2.9. Suppose there are five dwelling units and 12 persons

living in the five dwelling units as follows:
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Dwelling Unit Individuals
1 1,2
2 - 3, 4, 5, 6
3 7, 8
4 9
5 1o, 11, 12

1. A sample of two dwelling units is selected with equal probability
and without replacement. All individuals in the -selected dwelling units
are in the sample. What probébility does individual number 4 have of being
in the sample? Individual number 97

2. Suppose from a list of the twelve individuals that one individual
is selected with equal probability. From the selected individual two |
items of information are obtained: }his age and the value of the dwelling
in which he lives. Let Xl, 2,..1;X12 represent the ages of the 12 indi-
viduals and let Y.,...,Y

1 5
Clearly, the probability of selecting the 4t

represent the values of the five dwelling units.

h individual is %E-and there-

fore P(Xi) - %5-. Find the five probabilities P(Yl),...,P(Ys). Do you
agree that P(Y3) - %E-? As a check, ZP(Yj) should equal one.
3. Suppose a sample of two individuals is selected with equal prob-

ability and without replacement. Let Y1 be the value of Y,£ obtained at

J 3
the first draw and YZj be the value of Yj obtained at the second draw.
Does P(Ylj) - P(YZJ)? That is, is the probability of getting Yj on the

second draw the same as it was on the first? If the answer is not evident,
refer to Section 2.5.

Exercise 2.10. A small sample of third-grade students enrolled in

public schools in a State is desired. The following plan is presented only
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as an exercise and without consideration of whether it is a good one: A
sample of 10 third-grade classes is to be selected. All students in the
10 classes will be included in the sample.

Step 1. Select a srs of 10 schoo% districts.

Step 2. Within each of the 10 school districts, prepare a list

of public schools having a third grade. Then select one
school at random from the list.

Step 3. For each of the 10 schools resulting from Step 2, list

the third-grade classes and select one class at random.
(If there is'only‘one”&ﬁi}digrddépclass in the school,
it is in the sample). This will give a sample of 10 classes.

Deécribe third—grade‘classes 1§{cﬁewboﬁuléiion which hgve relatively
small chagces pfzbeiqg ge%ectedf :qufnggngedgq‘not%tiqq‘and write a
mathemafi;a} g;gresgion‘repFeseqpipgatheigFPbag;liFy qf a th;rd-grade
class being in the sample. |
2.8 TWO-STAGE SAMPLING

For various reasons sampling plans often employ two or more stages
of sampling. For example, a sample of counties might be selected, then
within each sample county a sample of farms might be selected.

Units used at the first stage of sampling are usually called primary
sampling units or psu's. The sampling units at the second stage of sam-
pling could be called secondary sampling units. However, since there has
been frequent reference earlier in this chapter .to "elements of a popula-

tion,"

the sarmling units at the second stage will be called elements.
In the simple case of two-stage sampling, each element of the popu-

lation is associated with one and only one primary sampling unit. Let i




58

be the index for psu's and let j be the index for elements within a psu.

Thus X,, represents the value of some characteristic X for the jth element

13 ;
th.
in the 1™ psu. Also, let

M = the total number of psu's,
m = the number of psu's selected for a sample,

Ni = the total number of elements in the ith psu, and

n, = the number of elements in the sample from the ith psu.

Then,

M

ZNi = N, the total number of elements in the population, and
i ‘

! I®

m "
Zni = n, the total number of elements in the sample.
i
Now consider the probability of an element being selected by a two
step process: (1) Select one psu, and (2) select one element within the

selected psu. Let,

Pi = the probability of selecting the 1th psu,

lei = the conditional probability of selecting the jth
element in the ith psu given that the ith psu has already
been selected, and

Pij = the overall probability of selecting the jth element in
the ith psu.

Then,

Piy = PiPyq

If the product of the two probabilities, Pi and P is constant for

1k %

every element, then every element of the population has an equal chance of
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being selected. In other words, given a set of selection probabilities

1
N and compute P

Pl,...,PM for the psu's, one could specify that Pij

i1

where-lei = ﬁ%— , 80 every element of the population will have an equal
i

chancefof selection.

Exercise 2.11. Refer to Table 2.1. An element is to be selected by

a three-step process as follows: (1) Select one of the Y classes (a row)

! N .
with probability ﬁif, (2) within the selected row select an X class (a

N
column) with probability ﬁll
. ' i R

element with equal probability. Does each element in the population of N
o | [ L i ! ' !

, (3) within the selected cell select an

elements have an equal probability of being drawn? What is the probability?

L ] . : .
The probability of an element being included in a two-stage sample

I S

is givenuﬁy
where
P; = the probability that the ith psu is in the sample

of psu's, and
511 = the conditional probability which the j element has
of being in the sample, given tﬁat the ith psu has
been selected.
The inclusion probability Pij will be discussed very briefly for three

important cases:

(1) Suppose a random sample of m psu’s is selected with equal prob-

ability and without replacement. The probability, P; , of the ith psu

being in the sample is fl --% where fl is the sampling fraction for the
first-stage units. In the second stage of sampling assume that, within

each of the m psu's, a constant proportion, fz, of the elements is selected.
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That is, in the ith psu in the sample, a simple random sample of ni ele-

ments out of Ni is selected, the condition being that n, = szi'
the conditional probabiliﬁy of the jth element in the ith psu being in
n

Hence,

the sample is P = f_ , Substituting in Equation 2.4, we have

P §
il Ny 2
Pij - flf2 which shows that an element's probability of being in the

sample is equal to the product of the sampling fractions at the two stages.

In this case P, is constant and is the overall sampling fraction.

1)

Unless Ni is the same for all psu's, the size of the sample,
ng = fZNi » varies from psu to psu. Also, since the psu's are selected
) ‘ ‘ . m n
at random the total size of the sample, n = Zni = fz ZNi, is not constant
C ‘ R | i
with régard to repetition of the sampling plan. In practice variation in

the sizé; n, of the sample from psu to psu might be very undesirable. If

appropriate information is available, it is possible to select psu's with

-

probabilities that will equalize the sample sizes n 1j

1 and also keep P

constant.

. This

N
(2) Suppose one psu is selected with probability P, = ii

i
is commonly known as sampiing with pps (probability proportional to size).

Within the selected psu, assume that a simple random sample of k elements

is selected. (If any N, are less than k, consolidations could be made so

i
all psu's have an N, greater than k). Then,
N N
S R A S
Pi=N > Fa"y 2™ Py Ty N, TN

i i

which means that every element of the population has an equal probability,

% » of being included in a sample of k elements.

Extension of this sampling scheme to a sample of m psu's could

encounter the complications indicated in Section 2.5. However, it was
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sta%fd that means exist for circumventing those complications. Sampling
bookﬂ 1/ discuss this matter quite fully so we will not include it in this

monograph. The point is that one can select m psu's without replacement

. N
in such a way that m ﬁl is the probability of including the ith psu in
N
the sample. That is, P; = m ﬁi . 'If a random sample of k elements is

selected with equal probability from each of the selected psu's,
P’ -k and
3
; N
;} ‘ = _1‘.-1‘—_-&.2
* Pi3 (mN)(Ni) N N

Thus, if the!Ni are known exactly for all M psu's-in the population,
and if a list of elements in each psu is available, it is possible to

select a two-stage sample of n élem%pts so that k elements for the sample

- come from each of m psu's and every element of the population has an equal

chance of being in the sample. 1In p:actice, however, one usually finds
one of two situations: (a) there is no information on the number of ele-
ments in the psu's, or (b) the information that does exist is out~-of-date.
Nevertheless, out-of-date information on number of elements in the psu's
can be very useful. It is also possible that a measure of size might
exist which will serve, more efficlently, the purposes of sampling.

(3) Suppose that characteristic Y is used as a measure of size. Let

Y
Yi be the value of Y for the ith psu in the population and let Pi = ?l
M
where Y = ZYi . A sample of m psu's is selected in such a way that
i

Y

P£ = m Yl is the probability that the ith psu has of being in the sample.

1/ For example, Hansen, Hurwitz, and Madow. Sample Survey Methods and
Theory. Volume I, Chapter 8. John Wiley and Soms. 1953.
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With regard to the second stage of sampling, let f21 be the sampling

fraction for selecting a simple random sample within the ith psu in the
sample. That is, lei = f21 . Then,
Yi
Pij = (m F)(£,)) (2.5)

In setting sampling specifications one would decide on a fixed valu¢

for P;j' In this context Pij 1s the overall sampling fraction or proporf

tion of the population that is to be included in the sample. For examp}e,

if one wanted a 5 percent sample, P;, would be .05. Or, if one knew there

1]
were approximately 50,000 elements in the population and wanted a sampl%“

of about 2,000, he would set,Pi’1 = ,04, Hence, we will let f be the over-

all sampling fraction and set P

13

the measure of size to be used and on the number, m, of psu's to be selected.

equal to f. Decisions are also made on

In Equation 2.5, this leaves f, to be determined. Thus, f

as follows for each psu in the sample:

24 is computed

fZi in

Use of the sampling fractions f21 at the second stage of sampling will give
every element of the population a probability equal to f of being in the
sample. A sample wherein every element of the population has an equal

chance of inclusion is often called a self-weighted sample.
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CHAPTER III. EXPECTED VALUES OF RANDOM VARIABLES

3.1\ INTRODUCTION

The .theory of exnected values of random variables is used exten-
sively in the theory of sampling; in fact, it is the foundation for
sampl%ng theory. Interpretations of the accuracy of estimates from
proba%ility samples depend heavily on the theory of expected values.

ﬁhe definition of a random variable was discussed in the previous
chapté?. It is a variable that can take (be equal to) any one of a
define& set of values with known probability. Let Xi be the value of X
for the ith element in a set of N elements and let Pi be the probability
that the ith element has of being selected by some chance operation so
that P, is known a priori; What is the expected value of X?

i
Definition 3.1. The expected value of a random variable X is

N N
z Pixi where I Pi-l. The mathematical notation for the expected value
i=1 i=1
N
of X is E(X). Hence, bv definition, E(X) = I Pixi .
i=1

Observe that ZPiXi is a weighted average of the values of X, the
welghts being the probabilities of selection. "Expected value" is a
substitute expression for "average value." 1In other words, E means "the
average value of" or "find the averape value of" whatever follows E. For
example, E(Xz),read "the expected value of xz;'refers to the average value
of the squaresof the values that X can equal. That is, by definition,

2 N

E(X7) = & PiX
i=1

2
i

If all of the N elements have an equal chance of being selected, all

values of Pi must equal % because of the requirement that ZPi =1. In
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N ZXi
this case, E(X) = iilﬁ Xi - ="

[

= X , which is the simple average of X

for all N elements.

Illustration 3.1. Assume 12 elements having values of X as follows:

X1 = 3 XS =5 X9 = 10
X2 = 9 X6 =3 xlO = 3
X3 = 3 X7 = 4 xll =8
X4 =5 X8 =3 x12 = 4

HI9+. .. +4
12

chance of selection. Or, by counting the number of times that each

For this set, E(X) = 5, assuming each element has the same

unique value of X occurs, a frequency distribution of X can be obtained

H

as follows:

3 3
3 5
4 2
5 2
8 1
, 9 1
,‘ 10 1
| where Xj is a unique value of X and Nj is the number of times Xj occurs.
We noted in Chapter I that >:Nj = N, ::ijj = IX,, and that 2—1:%1 - E—?— -X.

Suppose one of the X, values is selected at random with a probability equal

3

N
to Pj where Pj = E%— = ﬁi . What is the expected value of Xj ? By
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N IN. X
j) - ZPij - 2§1 Xj = ——§~i = X . The student may verify

that in this illustration E(Xj) = 5. Note that the selection specifica-

definition E(X

tions were equivalent to selecting one of the 12 elements at random with
equai;probability.
?Incidentally, a frequency distribution and a probability distribution

are very similar. The probability distribution with reference to X, would

3
be: ¥ '

X
‘ . 3 5/12
: o 4{£ e 212
5 . 2/12
8 1/12

9 /12 v

10 1/12

o .
LTIV Y

The 12 values, Pi = %-, for the 12 elements are alég‘a probability distri-
bution. This illustration shows two ways of treating the set of 12
elements.

When finding expected values be sure that you understand the defini-
tion of the set of values that the random variable might equal and the

probabilities involved.

Definition 3.2. When X is a random variable, by definition the

expected value of a function of X is

N
E[f(X)] = I P [f(X,)]
1 101

Some examples of simple functioms of X are: f£(X) = aX, f(X) = XZ,

f(X) = a + bX + cxz, and f(X) = (X—T()2 . For each value, X in a

i 9
defined set there is a corresponding value of f(xi).




Illustration 3.2. Suppose f(X) = 2X+3. With reference to the set

of 12 elements discussed above, there are 12 values of f(Xi) as follows:

£(x)) = (2)(3) + 3

9

f(xz) = (2)(9) + 3 =21

.

f(Xlz) =2(4) + 3 =11
Assuming Pi =-§ the expected value of f£(X) = 2X+3 would be
12 1 1 i 1
E(2X+3) = i E(in+3) = (139(9)+(I§)(21)+...+(I§)(ll) = 13

In algebraic terms, for f£(X) = aX+b, we have
N
E(aX+b) = I

. P, (aX +b) = IP (aX ) + EP;b

1

By definition IP (aX,) = E(aX), and ZPib = E(b). Therefore,

E(aX+b) = E(aX) + E(b)

Since b is constant and ZPi»- 1, ZPi

important theorem in expected values.

b = b, which leads to the first

Theorem 3.1. The expected value of a constant is equal to the
constant: E(a) = a.
By definition E(aX) = ZPi(axi) = aXPiXi. X4

another important theorem:

(3.1)

(3.2)

Since IP X, = E(X), we have

Theorem 3.2. The expected value of a constant times a variable equals

the constant times the expected value of the variable: E(aX) = aE(X).
Applying these two theorems to Equation (3.2) we have E(aX+b) =

aE(X) + b. Therefore, with reference to Illustration 3.2, E(2X+3) =

2E(X) + 3 = 2(5) + 3 = 13, which is the same as the result found in

Equation (3.1).
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Exercise 3.1. Suppose a random variable X can take any of the

following four values with the probabilities indicated:

Xl = 2 X2 =5 X3 =4 X4 =6

Pl = 2/6 P2 = 2/6 P3,== 1/6 P4 =1/6

(a) Find E(X) Answer: 4

(b) Find E(Xz) Answver: lSl. Note that E(XZ) # [E(X)]2

3
“. (c) Find E(X-X) Answer: O Note: By definition
— 4 -
K E(X-X) = I P_(X.-X)
) g=1 11

(d) Find E(X—-)-()2 Answer: 2%. Note: By definition
4
E(x-X)2 = Z‘Pi(xi—i)2
i=1

Exercise ng. From the following set of three‘éalues of Y, one

value is to be selected with a probability Pi:
Y1 = -2 Y2 = 2 Y3 =4
P/ = 1/4 P; = 2/4 PI = 1/4
(a) TFind E(Y) Answer: l%
. (b) Find E(l) Answer: 3/16. Note: A $ E(lﬁ
Y : * ° E(Y) Y

(¢) Find E(¥-¥)2  Answer: 4%

3.2 EXPECTED VALUE OF THE SUM OF TWO RANDOM VARIABLES

The sum of two or more random variables is also a random variable.
If X and Y are two random variables, the expected value of X + Y is equal
to the expected value of X plus the expected value of Y:E(X+Y) = E(X)+E(Y).
Two numerical illustrations will help clarifyv the situation.

Illustration 3.3. Consider the two random variables X and Y in

Exercises 3.1 and 3.2:
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=2 P-g Y2 P=g
Xp = > Pz'%. Y,=2 =7
X, = 6 Pa"%

Suppose one element of the first set and one element of the second
set are selected with probabilities as listed above. What is the expected

value of X + Y? The joint probability of gett:ing.Xi and Yj is P1P5 because

the two selections are independent. Hence by definition
4 3
E(X+Y)= I I PP (X, +Y,) (3.3)
=1 g1 13 1]

The possible values of X + Y and the probability of each are as follows:

X+Y A7 X+ Y P.P;
X, +Y, =0 P.P- =2 X.+Y. =2 P.Pr=i
1Yy 171 = 2% X3ty 3F1 = %
X, +Y =4 PPpr=l X.+Y. =6 P.P-=2
1+t Y, 172 = 2% 3t Y, 3%2 = 2
X. +Y.=6 P.P-=Z X.+Y. =8 P.P-a=i
1+ Y, 173 = % Xy + ¥, 33 = 2
X. +Y. =3 P.p-=2Z X +Y. =4 PPr=i
2t Y 2¥1 = 2% st Y 4’1 = 9%
X, +Y =7 PP‘-L X, +Y, =28 PP’=3—
2+t Y, P2 = 2 4+ Y7 s¥2 = 7%
X.+Y. =9 ppr=Z X +Y.=10 P,p-=2i
X, + Y, 3 = 2 ML P53 = 7%

As a check the sum of the probabilities must be 1 if all possible
sums have been listed and the probahilitv of each has been correctly
determined. Substituting the values of Xi + Yj and PiP5 in Equation (3.3)

we obtain 5.5 as follows for expected value of X + Y:

2 4 1 _
GO + GPW + ...+ G@AN) = 5.5
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From Exercises 3.1 and 3.2 we have E(X) = 4 and E(Y) = 1.5. There-
fore, E(X) + E(Y) = 4 + 1.5 = 5.5 which verifies the earlier statement
that E(X + Y) = E(X) + E(Y).

Illustration 3.4. Suppose a random sample of two is selected with

replacement from the population of four elements used in Exercise 3.1.

- ‘ Let x, be the first value selected and let x, be the second. Then x, and

e < L 2 l
Ty Y x2 are random variables and xl + xz is a random variable. The possible
'\” : “ ‘ ‘

values of x, + x

and the probability of each, P(xl,xz),are listed below.

1 ;72

Notice that each poss}ble order of’selection is treated separately.
et I T B ot

i

fl. fZ. P(xl,xz) x +x, 4 fl. fg_ P(xl,xz) x +x,
X, X, 4/3% 4 X, X 2/36 6
X, X, 4/36 7 X, X, 2/36 9
X, X4 2/36 6 X3 X, 1/3-6 8
X X, 2/36' 8 | X, X, 1/36 10
X, X, 4/36 7 X, X 2/36 8
x'2 X, 4/36 10 X, % 2/36 11
X, X, 2/36 9 X, X, 1/36 10
. X, X, 2/36 11 X, X, 1/36 12 f‘

By definition E(x1 + xz) is
4 4 2 1 -

358 + 3p(D) + 55(6) + ... + 3p(12) = 8

In Exercise 3.1 we found E(X) = 4. Since Xy is the same random variable

as X, E(xl) = 4, Also, x, is the same random variable as X, and E(xz) = 4.

2
Therefore, E(xl) + E(xz) = 8, which verifies that E(xl+x2) = E(xl) + E(xz).

In general if X and Y are two random variables, where X might equal

Xl,...,XN and Y might equal Yl,...,YM, then E(X + Y) = E(X)+E(Y). The
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proof is as follows: By definition E(X+Y) = gg Pij(X1+Yj) where Pij is
the probability of getting the sum Xi + Yj,and ZZPij = 1. The double
sumation 1is over all possible values of Pij(xi+Yj). According to
the rules for summation we may write
NM M NM
i;: Pij(xiwj) - ig: Pijxi + ig Pinj (3.4)

In the first term on the rféht, Xi is constant with regard to the summation
- 1! . ' ) .

over j; and in the second term on the right, Yj is constant with regard
Fooopanpr 0t S T R | |

to the summation over i. Theréfore, thé right-hand side of Equation (3.4)

b
can be written as

N M

TX,LP_ +ZY LP

PR S S T B
M N

And, since § Pij = P1 and i Pij = Pj , Equation (3.4) becomes

NM N M
I P, (X4 )= X P +I Y/P
PR R U L S S o
N M
By definition £ X P = E(X) and Z Y ,P_ = EC(Y) .
g 11 y 19

Therefore E(X+Y) = E(X) + E(Y) .

I1f the proof is not clear write the values of Pij(xi+Yj) in a matrix
format. Then, follow the summation manipulations in the proof.

The above result extends to any number of random variables; that is,
the expected value of a sum of random variables is the sum of the expected

values of each. 1In fact, there is a very important theorem that applies

to a linear combination of random variables.
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Theorem 3.3. Let u = ajuy +.0.t au where Ugseeesty are random

variables and 2 5++.,3 are constants. Then

E(u) = alEkul) +...+ a E(uk)

or in gsummation notation

k k
E(u) = E i au, = i aiE(ui)

The generality of Theorem 3.3 is impressive. For example, with refer-

ence to sampling from a population Xl,..., XN’ ui might be the value of X
obtained at fhe fi¥st draw, u, the value obtained‘at the second draw, etc.
The constants could be weights. Tﬁus; 1n‘£ﬁlséc£§e:“u would be a weighted
average of the sample measurements. Or, supﬁoéé §1;§2""’;k are averages
from a random sample for k different age grolu‘ps.‘: 'Ifﬁe averages are random
variables and the theorem could be applied tdwanyrifnear coﬁbination of the
averages. In fact uy could be any function of réhd%m variag}es} That is,
the only condition on which the theorem is based is that ﬁégéust be a

random variable. - @3

Illustration 3.5. Suppose we want to find the expecteq va;ge of
X + Y)2 wvhere X‘and Y are random variables. Before Theorem 3.3 ﬁ;n be
B applied we must square (X + Y). Thus E(X + Y)2 = E(X2 + 2XY + Yz) .
. The application of Theorem 3.3 gives E(X + Y)2 = E(X)2 + 2E(XY) + E(Y)z.

Illustration 3.6. We will now -show that

E(X-X) (Y-Y) = E(XY) - X¥ where E(X) = X and E(Y) = ¥
Since (X—i)(Y—f) = XY - XY - XY + XY we have

E(X-X) (Y-Y) = E(XY-XY-XY+XY)
and application of Theorem 3.3 gives

E(X-X) (Y-Y) = E(XY) - E(XY) - E(YX) + E(XY)
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Since X and Y are constant, E(XY) = X E(Y) = if, E(YX) = ¥X, and E(XY) = XY.
Therefore, E(X-X)(Y-Y) = E(XY) - XY

Exercise 3.3. Suppose E(X) = 6 and E(Y) = 4. Find

(a) E(2X+4Y) Answer: 28
() [E(2X)]1°  Answer: 144
(c) EQ@) Answer: 2

(d) E(5Y-X) Answer: 14

Exercise 3.4. Prove the following, assuming E(X) = X and E(Y) = Y:

(a) E(X-X) =0
(b) E(aX-bY) + cE(Y) = aX + (c-b)¥ .

(c¢) E[a(X-X) + b(Y-Y)] =0

(d) E(x+a)? = E(X2) + 2a% + a’

() E(=%)Z = E(x?) - ¥

(f) "E(aX+bY) = O for any values of a and b if E(X) = O and E(Y) = O.
3.3 EXPECTED VALUE OF AN ESTIMATE
Theorem 3.3 will now be used to find the expected value of the mean
of a simple random sample of n elements selected without replacement from
a population of N elements. The term ''simple random sample' implies equal
probability of selection without replacement. The sample average is

X, +... X
- 1 n
x.

n

where x, is the value of X for the ith element in the sample. Without

i

loss of generality, we can consider the subscript of x as corresponding

to the ith draw; i.e., x, is the value of X obtained on the first draw,

1

2 the value on the second, etc. As each X, is a random variable, x

is a linear combination of random variables. Therefore, Theorem 3.3

X

applies and



73

E(x) = % [Ex) +.oot E(x )]

In the previous chapter, Section 2.6, we found that any given element of
the populétion had a chance of % of being selected on the ith draw.

This means that xi is a random variable that has a probability equal to'%

of being equal to any value of the population set Xl,...,XN. Therefore,

- E(xl) = E(x,)) = ... = E(x) =X
:'rr | Y o

AP - -
!« Hence, E(x) = §~t—%ﬁL4t~§ = X. The fact that E(X)= X is one of the very

important properties of an average from a simple random sample. Inciden-
tally, E(x) = X whether the sampling 1s with or without replacement.

Definition 3.3. A parameter is a quantity computed from all values

in a population set. The total of X, the average of X, the proportion of
elements for which X1<A, or any other quantity computed from measurements
including all elements of the population is a parameter. -The numerical
value of a parameter is usually unknown but it exists by definition.

Definition 3.4. An estimator is a mathematical formula or rule for

making an estimate from a sample. The formula for a sample average,

in
n

x = , 18 a simple example of an estimator. It provides an estimate of

_ in
the parameter X =N

! Definition 3.5. An estimate is unbiased when its expected value

equals the parameter that it is an estimate of. In the above example, x
is an unbiased estimate of X because E(E) = X.

Exercise 3.5. Assume a population of only four elements having values

of X as follows: X, =2, X, =5, X, =4, X, =6, For simple random samples

1 2 3 4

of size 2 show that the estimator Nx provides an unbiased estimate of the

population total, in = 17. List all six possible samples of two and
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calculate Nx for each. This will give the set of values that the random
variable Nx can be equal to. Consider the probabilitv of each of the
possible values of Nx and show arithmetically that E(Nx) = 17.

A sample of elements from a population is not always selected by
using equal probabilities of selection. Sampling with unequal probability
is complicated when the sampling is without replacement, so we will limit
our discussion to sampling with replacement.

Illustration 3.7. The set of four elements and the associated prob-

abilities used in Exercise 3.1 will serve as an example of unbiased .
estimation when samples of two elements are selected with unequal prob-
ability and with replacement. Our’ estimator of the population total,

n x

p—

1 [ d - P '
24+5+4+6 = 17, will be x” = i—%——i-. The estimate x” is a random variable.

Listed belﬁw are the set of values that x” can equal and the probability

of each value occurring.

Possible Samples x5 Pj
X, X 6 4/36
x, x, 10.5 8/36 )
X) X4 15 4/36
x| %, 21 4/36 N
X, %, 15 4/36
Xy Xq 19.5 4/36
X, X, 25.5 4/36
Xg Xq 24 1/36
Xy X, 30 2/36
X, X, 36 1/36
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Exercise 3.6. Verify the above values of xj and P1 and find the

expected value of x”. By definition E(x”) = IP x_. ' Your answer should

i
be 17 because x” is an unbiased estimate of the population total.

To put sampling with replacement and unequal probabilities in a
general setting, assume the population is Xl,...,Xj,...,XN and the selec~
tion probabilities are Pl""'Pj""’PN' Let Xy be the value of X for
the ith element in a sample of n ele@encs and let Py be the probability

n x
g L
. i=1 P1
which that element had of being selected. Then x~ = I is an unbiased
R O LR 'T ROL S A AR VA i L AN . N -
estimate of the population total. We will now show that E(x”) = I Xj .
[ R R "mﬁ""” panma ey I o ! ' ' j‘l

To facilitate comparison of x” with u in Theorem 3.3, x” may be

written as follows: . , i

- 1 xl 1 xn
= =) ke o o =(—
X -—(n pl)h n(p )

n
' l Y xi '
It is now clear that a, = — and u, = — . Therefore,
i n i Py
PO PR | *n
E(x”) = ;{E(~—0 +...+ E(—)] (3.5)
Py Pn
*1
The quantity 5— , which is the outcome of the first random selection from
1
the population, is a random variable that might be equal to any one of the
X X X X,
set of values - xeansy —i-,..., §§ . The probability that-—L equals‘~l is P,.
P P P P |3
1 i ., N 1 i
Therefore, by definition
Xy N X N
ECH =T 2, Gh = I X,
P1 3 h| k| ‘
*i
Since the sampling is with replacement it is clear that any-;—\is the same
X i

random variable as L .
P1
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Therefore Equation (3.5) becomes

L N N
E(x7) = DI X, 4ot I X,]
3 3

Since there are n terms in the series it follows that

N
E(x") =ZI X, .
3

Exercise 3.7. As a corollary show that the expected value of ﬁ-is

equal to the population mean.

By this time, you should be getting familiar with the idea that an
estimate from a probability sample is a random variable. Persons respon-
sible for the design and selectioniof samples and for making estimates
from samples are concerned about the set of values, and associated

probabilities, that an estimate from a sample might be equal to.

Definition 3.6. The distribution of an estimate generated by prob-

ability sampling is;the sampling distribution of the estimate.

The values of i; and Pj in the numerical iilustration 3.7 are an
example of a sampling distribution. Statisticiang are primarily inter-
ested in three characteristics of a sampling distribution: (1) the mean
(center) of the sampling distribution in relation to the value of the
parameter being éstimated, (2) a measure of the variation of possible
values of an estimate from the mean of the sampling distribution, and
(3) the shape of the sampling distribution. We have been discussing the
first. When the expected value of an estimate equals the parameter being
estimated, we know that the mean of the sampling distribution is equal to

the parameter estimated. But, in practice, values of parameters are

generally not known. To judge the accuracy of an estimate, we need
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information on all three characteristics of the sampling distribution.
Let us turn now to the generally accepted measure of variation of a random
variable..
3.4 VARIANCE OF A RANDOM VARIABLE

The variance of a random variable, X, is the average value of the squares
of the deviation of X from its mean; that is, the average value of (X—i)z.
The square root of the variance is the standard déviation ‘(error) of ghe

variable.

Definition 3.7. In terms of expected values, the variance of a random
variable, X is E(X—i)2 where E(X) = X. Since X is a random variable,

(X—i)z is a random variable and by definition of expected value,

N
EX-%)2 = £ P, (x,-%)2
it
i
In case'Pi = %-we have the more familiar formula for variance, namely,
N
):(xi-n'c)2
=2 1 2
E(X-X) N OX
2 2 .2 2
Commonly used symbols for variance include: ¢, Oy Ve, 8%, var(X)
=, 2
E(Xi—X)

and V(X). Variance is often defined as . This will be discussed

N-1
in Section 3.7.
3.4.1 VARIANCE OF THE SUM OF TWO INDEPENDENT RANDOM VARIABLES
Two random variables, X and Y, are independent if the joint probability,
P
14° of getting Xi and Yj is equal to (Pi)(Pj

from the set of values of X and P

), where Pi is the probability

of selecting X is the probability of

i h

selecting Yj from the set of values of Y. The variance of the sum of two

independent random variables is the sum of the variance of each. That is,
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02 = 02 + 02
A+Y X Y

Illustration 3.8. In Illustration 3.3, X and Y were independent. We

had listed all possible values of xi+Yj and the probability of each. From

that listing we can readily compute the variance of X+Y. DBy definition

2 5.5y 12 S,35v12
°X+Y E[ (X+Y) (X+Y) ] i? Pin[(Xi+Yj) X+Y)] (3.6)
Substituting in Equation (3.6) we have
2 2 2 4 2 1 2 85
O vty 24(0—5'5) + 24(4—5.5) +...+ 32(10—5.5) =12

The variances of X and Y are computed as follows:

2 w2 20 02 20 02 1. 2 1. 2 7 . _
of = B0’ = 22-07 + 265-0% + Lu-0? + Le-n? =1

2 g2 _ 1 2,2 2,1 2 19
Oy E(Y-Y)" = Z{—Z—I.S) + 2(2—1.5) + 2(4—1.5) =7

We now have oi + 03 = %-+ %2 = %%-which verifies the above statement that

the variance of the sum of two independent random variables is the sum of

the variances. 3

Exercise 3.8. Prove that E[(X+Y)-(}_(+?)]2 = E(X+Y)2 - (ﬁ+?)2. Then
calculate the variance of X+Y in Illustration 3.3 by using the formula

2 vy = E(X+Y)2 ~ (i+?)2. The answer should agree with the result obtained -

Ox+

in Illustration 3.8.

Exercise 3.9. Refer to Illustration 3.3 and the listing of possible

values of X + Y and the probability of each. Instead of X1+Yj list the

products (Xi-i)(Y -Y) and show that E(Xi-i)(Yj—?) =0,

b
Exercise_3.10. Find E(X-X) (Y-Y) for the numerical example used in

Illustration 3.3 by the formula E(XY) - XY which was derived in Illustra-

tion 3.6.
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3.4.2 VARIANCE OF THE SUM OF TWO DEPENDENT RANDOM VARIABLES
The variance of dependent random variables involves covariance which
is defined as- follows:

Definition 3.8. The covariance of two random variables, X and Y, is

E(X—i)(Y—?) where E(X) = X and E(Y) = Y. By definition of expected value

E(X-X) (Y-Y) = i? Pij(Xi-X)(Yj-Y)

where the summa;ion is over all possible values of X and Y.

Xy’ SXY’ and Cov(X,Y).

Since (X+Y) -~ (¥%+Y) = (X-X) + (Y-Y) we can derive a formula for the

Symbols commonly used for covariance are o

variance of X+Y as follows:

2 VY — (T 12
‘ Oypy = ELGHD) = (X+Y)]
W ' - ‘E[(X—i) + (Y"?)lz ‘
wER . = E[(X—}-{)z + (Y—?)z + Z(X—i) (Y-Y) ]

Then, according to Theorem 3.3,

2

-2 -2 - -
+Y E(X-X)" + E(Y-Y)" + 2E(X-X) (Y-Y)

g

and by definition we obtain,

2 2 2
ey = %x t % + ZOXY- |

Sometimes Oyx is used instead of oi to represent variance. Thus

2
Oy+y ™ Ixx + Oyvy + ZOXY
For two independent random variables, Pij = Pin. Therefore
EX-X)(Y-Y) = i? Pin (Xi—x)(Yj—Y)

Write out in longhand, if necessary, and be satisfied that the following

is correct:
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£ PP (X -Y) = 0 (3.7)

Y iFy —X)(Yj-Y) = ZPi(Xi-X)ZPj(?

i 1 j

3

XY is zero when X and Y are independent.

Notice that in Equation (3.7) ZPi(Xi—i) = E(X-X) and ZPj
i h

which, for independent randpm variables, proves that E(X—i)(Y—?) =

which proves that the cavariance o

(Yj—§) = E(Y-Y)

E(X-X) E(Y-Y). When working with independent random variables the following
important theorem is frequently very useful:

Theorem 3.4. The expecfed value of the product of independent random
variables Ups Upsene, U is the product‘of their expected values:

E(ujuy...u) = E(ul')n(uz)L..E(uk)

3.5 VARIANCE OF AN ESTIMATE

The variance of an estimate from a probability sample depends upon
the method of sampling. We will derive the formula for the variance of X,
the mean of a random sample selected with equal probability, with and
without replacement. Then, the variance of an estimate of the population
total will be derived for sampling with replacement and unequal probability
of selection.
3.5.1 EQUAL PROBABILITY OF SELECTION

The variance of i, the mean of a random sample of n elements selected

with equal probabilities and with replacement from a population of N, is:
N =2
2 L(X,-X)
o] i
Var(x) = .S where 02 A S
n ’ X N
The proof follows:
By definition, Var(x) = E[i—E(i)]z. We have shown that E(x) = X. Therefore,

Var(§) = E(i—i)z. By substitution and algebraic manipulation, we obtain
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X oo x
1 n_ilz
n

Var(x) = E[

(xl-i)+...+(xn-i)

2

- Ef — ]
1 n 22 < <

- —E-E[ Z(xi—x) +Z E(xi-x)(x <X1].
n? 1=l 149 ]

Applying Theorem 3.3 we now obtain
- 1 n =2 - -
Var(x) = =5 [ ZE(x;-X)" + I ZE(x,-X) (x,-X)] ‘ . (3.8)
: n° i=l i¥j 1

In series form, Equation (3.8) can be written as
Var(®)= 1= [E(x,-0)% + E(x,~X)2 +..ot E(x =X) (x,-X) + E(x,~%) (x,=D)+...]
2 1 2 1 2 1 3
n ‘ | R
Since the sampling is with replacement x, and xj are independent and
the expected value of all of the product terms is ‘zero. {For example,

- - - ol e ‘ ) T - ‘
E(xl-X)(xz—X) - E(xl—X) E(xz-X) and we know that E(xl—X) and E(xz—x) are
zero. Next, considerlE(xl—i)z.‘ We have aireadywéhownftﬁat1£l ié a
random variable that can be equal to any one of the population set of
values Xl,...,XN with equal probability. Therefore

N
z(xj-i'c)2
=\ 2 i - o2
E(xl X) m ox
The same argument applies to xz, x3, etc. Therefore,
n =2 2 2 2 : - °§
z E(xi—X) = g, +...+ 0, = no_, and Equation (3.8) reduces to Var(x) = rall

1m1 X X~ K

The mathematics for finding the variance of x when the sampling is
without replacement is the same as sampling with replacement down to and
including Equation (3.8). The expected value of a product term in Equation

(3.8) 1is not zero because x, and x, are not independent. For example, on

1 3
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the first draw an element has a probability of %-of being selected, but

on the second draw the probabilitv is conditioned by the fact that the
element selected on the first draw was not replaced. Consider the first
product term in Equation (3.8). To find E(xl—i)(xz—i) we need to consider

the set of values that (xl-i)(xz—i) could be equal to. Reference to the

following matrix is helpful:

3y 2 3 3 e 3z
(Xl—k) (Xl—X)(Xz-X) .o (Xl-X)(XN—X)

- = -2 - =
(XZ_X)(XI-X) (XZ—X) ree (XZ—X)(XN—X)
KOED GRED . &P

[ . ' R T [ 4

The random va;iéSI; (xl-i?(xz-i) has‘an equa;‘progability of beiFg ﬁﬁfou,
the products in the above matrix, except for the squared terms on the main
diagonal. There are N(N-1) such products. Therefore,

NN

LI (X,-X)(X,~-X)
i#4 1 J

B(x)~X) (x,~X) = N(N-1)

According to Equation (1.9) in Chapter 1,

N N _ _ N -2
L (xi—x)(x ~X) = - L (Xi—X)
1#] 3 i
Hence, N
=2
Z(Xi—x) U2

i X
N(N-1) N-T

E(xl—i>(x2-i) = -

The same evaluation applies to all other product terms in Equation (3.8).
There are n(n-1) product terms in Equation (3.8) and the expected value of

2
g

each is - ﬁ%I . Thus, Equation (3.8) becomes
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\ 2
[ n g
- 1 -2 X
Var(x) = :2- [i E(Xi"'X) n(n—l) N"l]

Recognizing that E(xi-i)z,- ci and after some easy algebraic operations

the answer as follows is obtained:

2
o
Var(x) = %E% ;£ (3.9)

The factor %E% is called the correction for finite population because it

‘.5 does not appear when infinite populations are involved or when sampling

with replacement which is equivalent to sampling from an infinite population.
For two characteristics,X and Y, of elements in the same simple random
sample, the covariance of x and ; is given by a formula analogous to

Equation (3.9); namely,

‘ o
[ N._ . .
Cov(x,y) = ff:% -%Y— (3.10)

3.5.2 UNEQUAL PROBABILITY OF SELECTION

it |
‘ pi
In Section 3.3 we proved that x” = I is an unbiased estimate

Ll 3 =]

of the population total. This was for sampling with replacement and
- unequal probability of selection. We will now proceed to find the vari-

ance of x° .

N
< By definition Var(x”) = E[x"- E(x’)]2 . Let X =1 Xi . Then since
i
E(x") = X, it follows that
x X
Fl—+...+;‘l | . N
Var(x”) = E[-2———2 - x12 = L gL - 0+ 42 - 0012
n n2 51 Pn

X X
-lfmui-xﬁ+zz(i~xni-xn
n Py itk 1 P
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Applying Theorem 3.3, Var(x”) becomes

X X
Var(x”) = }-2- [ZEC—E - X)2 + £ TE(-E - x)(i - X)] (3.11)
‘ n Py 14§ Pi Py

Notice the similarity of Equations (3.8) and (3.11) and that the steps
leading to these two equations were the same. Again, since the sampling
is with replacement, the expected value of all product terms in Equation

(3.11) is zero. Therefore Equation (3.11) becomes

N n x
Var(x”) = if z Ef-i‘-ix)zl
n~ 1 Pi
N X i
. x o .‘N [ x Ny S
By definition E(—i ;‘X)z =L P (—i - X)2
P i'P
i i i
N X .
I P, G- 0?
Therefore Var(x”) = 1 : (3.12)

Exercise 3.11. (a) Refer to Exercise 3.1 and compute the variance
of x” for samples of two (that is, n = 2) using Equation (3.12). (b) Then
turn to Illustration 3.7 and compute the variance of x” from the actual
values of x°. Don't overlook the fact that the values of x” have unequal

probabilities. According to Definition 3.7, the variance of x” is

10

z Pj(x5 - X)2 where X = E(x”), x5 is one of the 10 possible values of x~,
J

and P, is the probability of x?¢

3 i
3.6 VARIANCE OF A LINEAR COMBINATION

Before presenting a general theorem on the variance of a linear
combination of random variables, a few key variance and covariance rela-
tionships will be given. 1In the following equations X and Y are random

variables and a, b, ¢, and d are constants:
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Var(X+a) = Var(X)

Var(aX) = aZVar(X)
. Var(aX+b) = aZVhr(X)

Cov(¥+a,Y+b) = Cov(X,Y)

Cov(aX,bY) = abCov(X,Y)

Cov(aX+b,cY+d) = acCov(X,Y)

Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)

Var(X+Y+a) = Var(¥X+Y)

< Var(aX+bY) = aZVar(X) + bZVar(Y) + 2abCoy(X,Y)

Illustration 3.9. The above relationships are easily verified by
using the theory of expected values. For example,
Var(aXtb) = E[aX+b-E(aX+b)]?

E[aX+b—E(aX)-E(b) ] >

E[aX-aE(X) ]2

Ela(x-%)1°

azE(X-)-()2 = aZVar(X)

Exercise 3.,12. As in Illustration 3.9 use the theory of expected

values to pro&e that
Cov(aX+b,cY+d) = acCov(X,Y)
L As in Theorem 3.3, let u = alul+...+akuk where al,...,ak are constants

and u u, are random variables. By definition the variance of u is

l,c-u,
Var(u) = E[u—E(u)]2
By substitution

Var(u) = E[a u +...+a~kuk E(alu +. ..+a.kuk)]2

= E[al(ul—ﬁl)+...+Ak(uk-ﬁk)]z where E(ui) - Ei
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By squaring the quantity in [ ] and considering the exnected values of
the terms in the series, the following result is obtained.
Theorem 3.5. The variance of u, a linear combination of random
variables, is given by the following equation
_ K 22 :
Var (u) i ajo; + i#i aiajoij

where o: is fhe variance of ui and oi1 is the covariance of ui and uj.

Theorems 3.3 and 3.5 are very useful because many estimates from
probability samples are linear combinations of random variables.

Illustration 3.10. Suppose for a srs (simple random sample) that

data have been obtained for two characteristics X and Y, the sample
values being XyseonsX and YyseersYqe What is the variance of §-§?
From the theory and results that have been presented one can proceed
immediately to write the answer. From Theorem 3.5 we know that Var(x-y) =
Var(x) + Var(y) -2Cov(x,y). From the sampling specifications we know the
variances of x and ; and the covariance. See Equations (3.9) and (3.10)
Thus, the following result is easily obtained:

Var(x-y) = (e G (of + 05 - 20,,) (3.13)
Some readers might be curious about the relationship between covar-

iance and correlation. By definition the correlation between X and Y is

Cov(X,Y) XY
rXY T d.0
YVar(X)Var (Y) XY

Therefore, one could substitute T 5% for Oyy in Equation (3.13).

Exercise 3.13. 1In a statistical publication suppose you find 87

bushels per acre as the yield of corn in State A and 83 is the estimated

yield for State B. The estimated standard errors are given as 1.5 and
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2.0 bushels. You become interested in the standard error of the differ-
ence in yleld between the two States and want to know how larse the
estimated difference is in relation to its standard error. Find the
standard error of the difference. You mav assume that the two vield
estimates are independent because the sample selection in one State was
completely independent of the other. Answer: 2.5.

Iliustration 3.11. No doubt students who are familiar with sampling

have already recognized the application of Theorems 3.3 and 3.5 to several
sampling plans and methods of estimation. For example, for stratified
random sampling, an estimator of the population total 1is

X" = lel +...+ kak = ZNixi

where Ni is the population number of sampling units in the ith stratum

and Ei is the average per sampling unit of characteristic, X, from a sample

of n, sampling units from the ith stratum. According to Theorem 3.3
E(x") = EENixi = ):NiE(xi)

If the sampling is such that E(;i) = ii for all strata, x~ is an unbiased

estimate of the population total. Accordins to Theorem 3.5

Var(x”) = Ni

- 2 -
Var(xl) +...+ Nk Var(xk) (3.14)
There are no covariance terms in Equation (3.14) because the sample selection

in one stratum is independent of another stratum. Assuming a srs from each

stratum, Equation (3.14) becomes

2 N °f 2 N % “’12\
Var(x”) = Ny (=) — +.ot N Gr—) —
1 Nl-l ny k Nk 1 n,

2, , . th
where Gi is the variance of X amous sampling units within the i stratum.
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Illustration 3.12. Suppose xi,...,xﬂ are independent estimates of

the same quantity,T. That 13,E(x£) = T. Let oi be the variance of xi.

Consider a welghted average of the estimates, namely

X" = wx; +o0ot i X (3.15)

where Zwi = 1, . Then

E(x") = le(xi) +. ..+ Vo E(xi) = T (3.16)

That 1is, fbr any set of weights where Iw, = 1 the expected value of x” is

i

T. How should the weights be chosen?

The variance of x” is

. o oou2 2 2 2
Var(x”) V19 +...+ Wi Oy
If we weight the estimates equally,wi = %-and the variance of x~ is
, oy |
Var(x”) = X [T] . (3.17)

which is the average variance divi&ed by k. However, it is reasonable to

give more weight to estimates having low variance. Using differential

calculus we can find the weights whicﬁ will minimize the variance of x”.

The optimum weights are inversely vproportional to the variances of the
g 1

estimates. That is, w3
g
i

P

As an example, suppose one has two independent unbiased estimates of
| the same quantity which originate from two different samples. The optimum

weighting of the two estimates would be

1 -~ .1~'
2% + 2%
1 2
11
25
1 9%
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As another example, supnose xi,...,x£ are the values of X in a sample

of k sampling units selected with equal probability and with replacement.

-

In this case each x:L is an unbiased estimate of X. If we let LA -‘% , X7

is i, the simple average of the sample values. Notice, as one would expect,

Equation (3.16) reduces to E(x) = X. Also, since each estimate, x{ s

same random variable that could be equal to any value in the set xl,...xN,

is the

) (X, -%)°
- it is clear that all of the o -~
Al '..Ut ‘4‘ ‘ 2

e Equation (3.17) reduces to %%:xwhich‘agrges with the first part of Section.

's must be equal to ¢ = llence,

3.5.1. ‘ . ‘ o
[ e t M Mi ‘.IJ w i AT P x
Exercise 3.14. If you equate xi in Equation (3.15) with ;i- in
: t Py
Section 3.5.2 and let w, = %-and k = n, then x” in Equation (3.15) is the
Z—‘i-_ ..._._1. - - N

same as X --—;l in Section 3.5.2. Show that in this case Equétion (3.17)
becomes the same as Equation (3.12).
3.7 ESTIMATION OF VARIANCE

All of the variance formulas presented in previous sections have
involved calculations from -a population set of values. In practice, we

have data for only a sample. lience, we must consider means of estimating.

, variances from sample data.

3.7.1 SIMPLE RANDOM SAMPLING

In Section 3.5.1, we found that the variance of the mean of a srs is

2
ag
Var(x) = 32 n_x

o1 (3.18)

where o, =
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n

Z(xi—§)2
i
X? n

As an estimator of o seems like a natural first choice for

consideration. However, when sampling finite populations, it is customary
to define variance among units of the population as follows:

N
=42
Z(Xi—X)

2 i
e |

n
I(x,-%)° | 5 i
2 1

and to use s” = B — as an estimator of 82 . A reason for this

will become apparent when we find the expected value of s2 as follows:

The formula for s2 can be written in a form that is more convenient

. , . . . y o

for finding E(sz). Thus,

n . , i | o=

-2
L(x,-x) 2 -2
52 1 i ] Ix, = nx
n-1 n-1
2 1 o2 =2
and E(8”) = —=— [ZE(x) - nE(x")]
n-1 i i
We have shown previously that X is a random variable that has an equal .

probability of being any value in the set X ""’XN' Therefore

[

N

2
) ixi " nzxi
E(xi) -5 and iE(xi) = X -
2 n zxi -2
Hence, E(s™) = Py [—N—' - E(x7)] (3.19)

We know, by definition, that oé = E(x - i)z and it is easy to show that
E(§—i)2 = E(§2) -2

2

X

2

Therefore, E(§2) = g5 4+ X° .
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By substitution in Equation (3.19) we ohtain

2
X
2 n i =2 2
E(S ) = n_I [ N X" - 0';"]
z(xi-i)2 zxf —
By definition ox = N =N - X~ and since the specified method of
2 2
ling was srs, o2 = 3% 3§ we have E(sz) =2 2 _Nen .ZE]
sampLing * 9% T N1 n ° n-1 '9X "N-1 @

which after simplification is

2 N 2

E(s”) = -1 %

Note from the above definitions of oi and S2 that
2 "N 2 ‘

ST =¥T %

Therefore E(sz) = S2
2, 2 N-1 .2

Since s~ is an unbiased estimate of S”, we will now subst;tute-ji— S” for

ci in Equation (3.18) which gives

2

2

N—N

Var(x) = (3.20)

<
Slm

Both Equations, (3.18) and (3.20), for the Var(x) give identical results
and both agree with E(§-i)2 as a definition of variance. We have shown
that s2 is an unbiased estimate of SZ. Substituting 32 for S2 in Equation
(3.20) we have

- N-n s2
var(x) = 5 o (3.21)

as an estimate of the variance of x. With regard to Equation (3.18),

Eﬁl 52 is an unbiased estimate of ci . When E§l-sz is substituted for
2 . . .
Oy Equation (3.21) is obtained.
Since in Equation (3.20), §ﬁB-is exactly 1 minus the sampling fraction

and 52 is an unbiased estimate of SZ, there is some advantage to using
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=2
Z(Xi—X)

H-1

2

Equation (3.20) and S = as a definition of variance among

sampling units in the population.

Exercise 3.15. 'For a small population of 4 elements suppose the

values of X are X1 = 2, X2 =5, X3 = 3, gnd X4 = 6. Consider simnle
random samples of size 2. There are six possible samples.

(a) For each of the six samnles calculate x and sz. That is,
find the sémpling distribution of x and the samnling
distribution of sz. _

(b) Calcuiate Sz, then find Var(gl‘usinq Equation (3.20).

(c) Calculate the variance among the six values of x and compare
the result with Var(§) obtained in (b). The results should
be the same.

(d) From th_sampling distribution of 52 calculate E(sz) and
verify that E(sz) - 52.

3.7.2 UNEQUAL PROBABILITY OF SELECTION
| In Section 3.5.2, we derived a formula for the variance of the
estimator x” where

gt

P

x = —L | (3.22)

The sampling was with unequal selection probabilities and with replacement.
We found that the variance of - x” was given by

N X

):Pi(F1 - x)?
1 LRy
Var(x”) = = (3.23)

As a formula for estimating Var(x”) from a sample one might be inclined,

as a first guess, to try a formula of the same form as Equation (3.23) but
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that does not work. Equation (3.23) is a weighted average of the squares

x .
of deviations (Fl - X)2 which reflects the unequal selection probabilities.
i .

1f one applied the same weighting system in a formula for estimating

variance from a sample lie would in effect be applying the weights twice;

- first, in the selection process itself and second, to the sample data.

The unequal probability of selection is already incorporated into the
sample itself.

As in some of the previous discussion, look at the estimator as follows:

x1 xn
— +l - e + — -~ -~
+. L ]
“ Pi Pa *1 + *n PR
X = = where x;] = —
n n i Py

N T T

Each xi is an independent unbiased estimate of the population total. Since

each value of x/ receives an equal weight in determining x” it appears that

“mmw':-'i&’:,-"!\ [ o
the following formula for estimating Var(x”) might work:
s2
var(x”) = o (3.24)
n
Z(x‘—x’)2
2 i b
where s =
n-1

By following an approach similar to that used in Section 3.7.1, one can

prove that
N X
BGs?) = I P (* -
i i

%) 2

That is, Equation (3.24) does provide an unbiased estimate of Var(x”) in
Equation (3.23). The proof is left as an exercise.

Exercise 3.16. Reference is made to Exercise 3.1, Illustration 3.7,

and Exercise 3.11. 1In Illustration 3.7 the sampling distribution of x~
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(See Equation (3.22)) is given for samples of 2 from the ponulation of

4 elements that was given in Exercise 3.1.

. 2
(a) Compute var(x”) = %- (Equation (3.24)) for each of the 10

possible samples.

(b) Compute the expected value of var(x”) and compare it with the
result obtained in Exercise 3.11. The results should be the
same. Remember, when finding the expected value of'var(x’),
that the ;"s do not occur with equal frequency.

3.8 RATIO OF TWO RANDOM VARIABLES

In sampling theory and practice one:frequeﬁtly encounters estimates

that are ratios of random variables. It was pointed out earlier that

.ou E(u)
LQ;) 4 E(w)

value of a ratio and for the vafiance‘of a ratio will now be presented

without derivation. The formulas are approximations:

2
- - g
¥y s B U W U U W
B 22+ 2 —
w W W uw
2 2
Uy . U2 ou 0w 2puw ou ow
Var()) = E 5+ - ——)
v u w uw
where u = E(u)
w = E(w)
oi = E(u-t-x)2
o2 = E (i) 2
0 — -
and P = 5o where Uuw = E(u-u) (w-w)

For a discussion of the conditions under which Equations (3.25) and

(3.26) are good approximations, reference is made to Hansen, Hurwitz, and

A K [T . . o ek . [ 4
where u and v are random variables. Formulas for the expected

(3.25)

(3.26)

~
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Madow. g/ The conditions are usually satisfied with regard to estimates
from sample surveys. As a rule of thumb the variance formula is usually

accepted as satisfactory if the coefficient of variation of the variable

o
in the denominator is less than 0.l; that is, if :E < 0.1. In other words,
w

this condition states that the coefficient of variation of the estimate in
the denominator should be less than 10 percent. A larger coefficient of

L variation might be tolerable before becoming concerned about Equation (3.26)

! as an approximation.
B a

. The condition :E < 0.1 is more stringent than necessary for regarding
W

the bias of a ratio as negligible. ﬁith few exceptions in practice the
bias of a ratio is ignored. Some of the logic for this will appear in
the illustration below. To summarize, the conditions when Equations {(3.25)
and (3.26) are not good approximations are such that the ratio is likely to
be of questionable value owing to large variance.

If u and w are linear combinations of random variables, the theory
presented in previous sections applies to u and to w. Assuming u and w

u
are estimates from a sample, to estimate Var(;) take into account the

2 2

?%MﬁJ N\ sample design and substitute in Equation (3.26) estimates of ﬁ, G, cu, Uw

»
and P Ignore Equation (3.25) unless there is reason to believe the bias
of the ratio might be important relative to its standard error.

It is of interest to note the similarity between Var(u-w) and Varq%).

According to Theorem 3.5,

Var(u-w) = 02 + 02 - 20 ca ‘
u w uw uw

2/ Hansen, Hurwitz, and Madow, Sample Survey Methods and Theory,
Volume I, Chapter 4, John Wiley and Sons, 1953.
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By definition the relative variance of an estimate is the variance of the
estimate divided by the saquare of its expected value. Thus, in terms of

the relative variance of a fatio, Equation (3.26) can be written

u oi 05 %%
Rel Var(;) == + = - Zpuw S
u W uw

The similarity is an aid to remembering the formula for Var(%).

illustration 3.13. Suppose one has a simple random sample of n

elements from a population of N. Let x and ; be the sample means for

characteristics X and Y. Then, u = ;, w =

>
2 2
0'2 - E:B. .S_g. and 02_= ..N_:ll .S_!
u N n w N n
%
Notice that the condition discussed above, — < 0.1, is satisfied if the
w

sample is large enough so

Substituting in Equation (3.26) we obtain the following as the variance of

the ratio:

.2 2
% N-n 1. % Sx Sy 2SSy
Var(Q) = ({IQ) S5+ 5 - ——1
y ¥ ¥ XY
The bias of %» as an estimate of % is given by the second term of
y Y

Equation (3.25). For this illustration it becomes

2
N-m, 1. X >y Pxyx°%
Q) Sz -——]
¥y ¥ X

As the size of the sample increases, the bias decreases as %-whereas the

1
standard error of the ratio decreases at a slower rate, namely —— .

n
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Thus, we need not be concerned about a possibility of the bias becoming
important relative to sampling error as the size of the sample increases.
A possible exception occﬁrs when several ratios are combined. An example
is stratified random sampling when many strata are involved and separate
ratio estimates are made for the strata. This 1s discussed in the books
on sampling.

3.9 CONDITIONAL EXPECTATION

o
ff“ The theory for conditional expectation and conditional variance of a
Ch
s
N randon variable is a very important part of sampling theory, especially
Efﬁ in the theory for multistage sampling. The theory will be discussed with
reference to two-stage sampling.
Ly
The notation that will be used in this and the next section is as
follows: !
M is the number of psu's (primary sampling units) in the population.
m is the number of psu's in the sample.
Ni is the total number of elements in the ith pSu.
M
N = ENi is the total number of elements in the population.
i
o th
{ﬁ&; n, is the sample number of elements from the i psu.
e m
n = Zni is the total number of elements in the sample,
i
- _n
n = —
m

xij is the value of X for the jth element in the ith psu. It
refers to an element in the population, that is, j = 1,..., Ni’

and i = 1,..., M.
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xij is the value of X for the jth element in the sample from the

ith psu in the sample, that is, the indexes i and j refer to

the. set of psu's and elements in the sample.

N
Xi- = Zixij is the population total for the ith psu.
j’ .
z Xi- t
Xi kv is the average of X for all elements in the i~ psu.
) |
MNi M
LL°X £X
- 13 13 41 ‘ Lo
X = N =3 is the average of all N elements.
N B & T g.;l WL
M
.o |
X, = BT is the average of‘the psu totals. Be sure to note the
difference between X , and X, .
. ni‘ ET: ! LY B PR ‘ th
X, = z xij is the sample total for the 1~ psu in the sample.
A
- %5 :
X C o is the average for the ny elements in the sample from
) i
the ith pPsSu.
™m
ZZix

—

i)
X = 11;f~— is the average for all elements in the sample.

Assume simple random sampling, equal probability of selection without

replacement, at both stages. Consider the sample of n, elements from the
ith psu. We know from Section 3.3 that §1_ is an unbiased estimate of the

psSu mean ii- ; that 1is, E(§i_) = ii- and for a fixed i (a specified psu)

ENixi- = NiE(xi-) = Nixi. = Xi. . But, owing to the first stage of sampling,
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ENi;ci must be treated as a random variable. Hence, it is necessary to

become involved with the expected value of an expected value.
First, consider X as a random variable, in the context of single-

stage sampling, which could equal any one of .the values Xii in the
M -
population set of N = IN Let P(ij) be the probability of selecting

i
th th cq
the j element in the 1~ psu; that is, P(ij) is the probability of X

i

being equal to X By definition

11"
MNg
E(X) = LITP(1DX,
ij i

| IARTE TN N O AR I B LR I
Now consider the selection of an element as a two—step procedure:

Mé}‘jmu et

(1) selected a psu with probability P(i), ané (2) sélecteé‘an eiémenc

i
within the selected psu with proBability‘P(jli); In words, P(j|1) is the
probability of selecting the jth element in the 1t§ psu given that the
ith psu has already been selected. Thus,‘P(ij) =;$(i)f(j|i). By sub-

stitution, Equation (3.27) becomes

MNi
E(X) = I P(L)P(|1)X
. ij
ij
M Ni
or E(X) = IP(i) I P(j|i)X,,
ij
i h|
Ni
By definition, £ P(jli)xij is the expected value of X for a fixed value
h|

of i. It is called"conditional expectation.”

N,
Let EZ(XIi) = ZlP(jli)X where EZ(XIi) is the form of notation we

ij

Cde

will be using to designate conditional expectation. To repeat, EZ(XIi)

means the expected value of X for a fixed i. The subscript 2 indicates

(3.27)

(3.28)~
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that the conditional expectation applies to the second stage of sampling.
El and EZ will refer to expectation at the first and second stages,
respectively. .
Substituting Ez(Xli) in Equation (3.28) we obtain
M

E(X) = IP(1) E2(X|1) (3.29)
i

There is one value of Ez(xli) for each of the M psu's. In fact Ez(XIi)

is a random variable where the probability of Ez(xli) is P(1). Thus the
right-hand side of Equation (3.29) is, by definition, the expected value
of Ez(xli). This leads to the following theorem:

Theorem 3.6. E(X) = E,E,(X|1)

Suppose P(j|i) b %— and P(i) = %-. Then,
i |

N
E,(X[1) = tdox,. =%

| N i-
_ Moo IX,
and E(X) = El(xi_) = i(ﬁ)(xi.) =0

In this case E(X) is an unweighted average of the psu averages. It is
important to note that,if P(i) and P(jli) are chosen in such a way that
P(ij) is constant, every element has the same chance of selection. This
point will be discussed later.

Theorem 3.3 dealt witi the expected value of a linear combination of
random variables. There is a corresponding theorem.for conditional expecta-
tion. Assume the linear combination is
k
U= alu1+"7+akuk = tE

a.u
_1tt
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where al,...,ak are constants and ul,...,uk are random variables. Let
E(Ulci) be the expected v§lue of U under a specified condition,ci, where
cy is one of the conditions out of a set of M conditions that could occur.
The theorem on conditional expectation can then be stated symbolically as

follows:

Theorem 3.7. E(U[c,) = alE(ul|ci) oot akE(uklci)

k
or E(Ulci) = iatE(utlci)

Compare Theorems 3.7 and 3.3 and note that Theorem 3.7 is like
Theorem 3.3 except that conditional expectation is applied. Assume c is
a random event and that the‘probability of the event ey occurring is P(i).

Then E(Ulci) is a random variable and by definition the expected value of

M

E(Ulci) is ZP(i)E(UIci) which is E(U). Thus, we have the following
i
theorem:

Theorem 3.8. The expected value of U is the expected value of the

conditional expected value of U, which in svmbols is written as follows:

~ EU) = EE(U]ci) (3.30)
‘féf' Substituting the value of E(Ulci) from Theorem 3.7 in Equation (3.30)

we have

k
E(U) = E[alE(ullci)+...+akE(uk|ci)] = E[iatE(utlci)] (3.31)

Illustration 3.14. Assume two-stage sampling with simple random

sampling at both stages. Let x”, defined as follows, be the estimator of

the population total:

n
§ xij (3.32)
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Exercise 3.17. Examine the estimator, x”, Equation (3.32). Express

»

it in other forms that might help show its logical structure. For example,

E

ixij ? Does it seem like a reasonable way of

élH?

fof a‘fixéd'i what 1is

e M 33

RO §
estimating the population total?

To display x” as a linear combination of random variables it is

convenient tohexpress it in the following form: , o
N N N N
1 M1 [ "m M 'm R
[ 5 x11+,..+ - Xn ] ...+ [ o Xm +...+ o X ] (3.33)
1. 1 1 m m

ﬁm@%ese we want sto: find the expected value of x” to determine whether it

is equal to the population total. According to Theorem 3.8,

E(x") = E,E, (x* | 1) N (3.34)

Ny

T EGD = EEE
i

M B
e M B

i
xijlli} (3.35)

Eﬁuaq}qns (3 34) and (3.35) are obtained simply by substituting x” as

L]

’ the random variable in (3. 30) The c, now refers to any one of the m

i
i pau-ﬁ in the sample. First we must solve the conditional expectation,
",‘il‘ N
- E (x'[i) Since~g and ;1 are constant with respect to the conditional
‘3 - h._ . i

*

.expédta;ipn, and making use of Theorem 3.7, we can write

N
-

n
L
1

i

IR S EO 1) (3.36)

3|x
R -]

EZ(xij

c - Sea ¥ v

lvfﬂ¢’kﬁé§ fox any given psu in the sample that xij is an element in a

" simple random sample from the psu and according to Section 3.3 its
i lr‘_

qfexiécted value is the psu mean, X That is,

i. "

Ep(xyyl1) = X,
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Ez(xijli) =n, X (3.37)
Substituting the result from Equation (3.37) in Equation (3.36) gives S

. m
- )’{ o
E,(x | 1) o i X,

(3.38)
Next we need to find the expected value of Ez(x'li). In Equation

(3.38), Ni is a random variable, as well as ii-’ associated with the .first
stage of sampling. Accordingly, we will take Xi- = N

X, as the random - - . =
i7i. ) -
variable which gives in lieu of Equation (3.38). : -g
. m ' - - ‘.-'-:4: B
. gy = M Y
ket T A e
Therefore, . F
- M n e I Sl e 4 : -
EGT) = BT X.) e
i
IS NS T Y : Lwor N
From Theorem 3.3 R
. o m m i
M M 1
E.[=L X, ] ==IE (X, ) ey
1'm, "1 ? g 11 i
Since 4 -E*:
M e T
m ixi' : +
ZEl(xi-) = mf m ] L,
- i . N Ll
m M " .
M ; .
E.[-2ZX, ] =IX vl
» 1'm 1 i. i i L
M ‘ L
Therefore, E(x”) = & X,,=X This shows that x” is an unbiased Vs
i - . ":" 1
estimator of the population total.
3.10 CONDITIONAL VARIANCE

Conditional variance refers to the variance of a variable under a
specified condition or limitation.

It is related to conditional prob-
ability and to conditional expectation.




104

To find the variance of x” (See Equation (3.32) or (3.33)) the following
important theorem will be used:
Theorem 3.9. The variance of x” is given by

V(x") = Vlzz(x’li) + Elvz(x‘|11

where Vl is the variance for the first stage of sampling and V2 is the
"conditional"” variance for the second stage.

We have discussed Ez(x’li) and noted there is one value of Ez(x’li)
for each psu in the population. Hence VlEz(x‘[i) is simply the variance
of the M values of Ez(x’[i). '

In Theorem 3.9 the conditional variance, Vz(x’li), by definition is

V(1) = B {1x"=E, x| )17 [4) )

b

To understand Vz(x’|i) think of x” as a linear combination of random
variables (see Equation (3.33)). Consider the variance of x” when i is
held constant. All terms (random variables) in the linear gombination
are nov constant except those originating from sampling within the ith
psu. Therefore, Vz(x’li) is associated with variation among elements in
the ith psu. Vz(x’li) is a random variable with M values in the set, one
for each psu. Therefore, Elvz(x‘li) by definition is
M
Elvz(x’[i) = iP(i)VZ(x’Ii)

That is, Elvz(x’li) is an average of M values of Vz(x’li) weipghted by
P(i), the probability that the ith psu had of being in the sample.

Three illustrations of the application of Theérem 3.9 will be given.
In each case there will be five steps in finding the variance of x~:

Step 1, find Ez(x’|i)

Step 2, find VlEz(x’li)
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Step 3, find v2(x‘|1)
Step 4, find ElVZ(x"i)
" Step 5, combine results from Steps 2.and 4.

Illustration 3.15. This is a simple illustration, selected because

we know what the answer is from previous discussion and a linear combina-
tion of random variables is not involved. Suppose x~ in Theorem 3.9 is
simply the random variable X where X has an equal probability of being

M
any one of the X,, values in the set of N = IN, . We know that the .

1] i 1
variance of X can be expressed as follows: Lo
1 Ny 2 Co '
V(x°) = rpl (& L) (3.39)
¥ iy 1578

In the case of two-stage sampling an equivalent method of selecting a
value of X is to select a psu first and then select an element within the
psu, the condition being that P(ij) = P(i)P(j]i) = %-. This condition is

W
satisfied by letting P(1) = —i and P(j!i) - l— . We now want to find
i

V(X) by using Theorem 3.9 and check the result with Equation (3.39).
Step 1. From the random selection specifications we know that

Ez(x‘li) = X Therefore,

i °

Step 2. VE,(x” [1) = v (x )
N
We know that xi. is a random variable that has a probability of ﬁl of being

equal to the ith value in the set 21""’ iM . Therefore, by definition

of the variance of a random variable,

NN,
VED =1 R, X2 (3.40)
Ly,
_ooan K
where X = i R xi- -
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Step 3. By definition

Vz(x'li) =zt

o P X

N
Step 4. Since each value of Vz(x’li) has a probability ﬁi

M N, N
P o i i }_ _- 2
E,V,(x | 1) -i T *jz N, (xij xi.) (3.41)

et N
gm0 T
B g

Step 5. From:Equations (3.40) and (3.41) we obtain

M MN
Ve =g & R D2+ o R O% (3.42)
1 i3 :

The fact that Equations (3.42) and (3.39) are the same is verified
by Equation (1.10) in Chapter I.

Illustration 3.16. Find the variance of the estimator x” given by

Equation (3.32) assuming simple random sampling at both stages of sampling.
Step 1. Theorem 3.7 is applicable. That is,

N,

™o N -
E,(x7|1) = A N xijli]
ij i

which means "sum the conditional expected values of each of the n terms

in Equation (3.33)."

RN With regard to any one of the terms in Equation (3.33), the

conditional expectation is

N N N,

ﬁ X,
M i M i M Oig M i
2[m n xijlil m n, EZ(xiin) m o n, xi- mn,
i i i i
Therefore
myo Sy
ByGrliy = ot o = (3.43)
ij i

With reference to Equation (3.43) and summing with respect to j, we have
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i xi-

i

Bi=
o

n
z
i
Hence Equation (3.43) becomes

M m
E,(x7[1) = = i X,. - (3.44)

X
i
Step 2. Find VlEz(x‘Ii). This is simple because i;— in Equation

(3.44) 1is the mean of a random sample of m from the set of psu totals

Xl.,..., XM . Therefore,

2
4]
ViE,(x7[1) = MO G — (3.45)
where :
M - 3 M
(X, X)) IX
1. - i
0‘2 = é‘_—..._.___. d X = 1-___
bL M an T

In the subscript to 02, the "b" indicates between psu variance and "1"
diéfiﬂguishes this variance from between psu Qariances in later illustra-
tions.

Step 3. Finding Vz(x‘li), is more involved because the conditional
variance of a linear combination of random variables must be derived.

- However, this is analogous to using Theorem 3.5 for finding the variance

”73;?{ of a linear combination of random variables. Theorem 3.5 applies except
that V(uli) replaces V(u) and conditional variance and conditional co-
variance replace the variancés and covariances in the formula for V(u).
As the solution proceeds, notice that‘the strategy is to shape the problem
so previous results can be used.
Look at the estimator x~°, Equation (3.33), and determine whether any

covariances exist. An element selected from one psu is independent of an
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element selected from another; but within a psu the situation is the same
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as the one we had when finding the variance of the mean of a simple random

sample. This suggests writing x” in terms of X, because the X

i. i-

independent. Accordingly, we will start with

m
x’-% zni?:i
4
Hence
My ®
Vo (x1) = V([ i X X, ]Ii}
Since the Ei.'s are independent W
2 m
x“| 1) --——. ZVZ(Nixi |1)
m i
and since Ni is constant with régafd’t&[thé“conditional variance
v o 2 m o P
- M 2
V,(x7|1) ¥ i N Vz( 4_11?

Since the sampling within each psu is simple random sampling

2
N ni 01
SONL (w 1) w,
i
where
2. gi L g % 32
i j 1 i3 “4i-

's are

(3.46)

(3.47)

Step 4., After substituting the value of V2(§i_l1) in Equation (3.46),

and then applying Theorem 3.3, we have

2.

2 m N.-n o]
. M 2 14T i
E\V,x7|1) = = I E N N1 @ ]
m i i

Since the first stage of sampling was simple random sampling and each psu

had an equal chance of being in the sample,
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2 2
e i G I G B
174 N-1T ny M {1 N-L n
Hence
2
M N,-n o
- M 2 7474 Y4
n1v2<x | 1) - i Ny N1 n (3.48)

Step 5. Combining Equation (3.48) and Equation (3.45) the answer is

02 M N, -n '02
- = 2 M-m bl M 271 174
“c;-,r - ﬁ‘;r;,‘w::;"‘m. . V (x ) M M_——l "‘m - + m i Ni Ni—l —"'ni (3 . 49)

Illustration 3.17. The sampling specifications are: (1) at the first
B N
: stage select m psu's with replacement and probability P(i) -‘—i , and (2)

N

at the second stage a simple random sample of n eléﬁehts is fo be selected
fron each of the m psu's selected at the first stage. . This will give a sam—
ple of n = mn elements. Find the variance of the sample estimate of the
population total.

-The estimator needs to be changed because the péu's are not selected
with equal probability. Sample values'need to be weighted by the recip-
rocals of their probabilities of selection if the estimator is to be
unbiased. Let

g P“(ij) be the probability of element 1ij being in the sample,

/ P“(1) be the relative frequency of the ith psu being in a sample
of m, and let

P’(jli) equal the conditional probability of element ij being in

the sample given that the ith psu is already in the sample.

Then

P°(1j) = P (1)P"(4]1) .

According to the sampling specifications P°(1) = m ﬁi . This prob-

abilitv was described as relative frequency because 'probability of being
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in a sample of m psu's” is subject to misinterpretation. The ith psu

can appear in a sample more than once and it is counted every time it
appears. That is, if the ith psu 1s selected more than once, a sanmple of
n is selected within the ith Psu every time that it is selected. By

substitution

Z

PU(11) = [m ]

“18,
Zs

(3.50)

e
Zl:’l
[

i
Equation (3.50) means that every element has an equal probability of being

in the sample. Consequently, the estimator is very simple,

N mn e
x* =8 rIx (3.51)
m ij o e

Exercise 3.18. Show that.x”, Equation (3.51), is an unbiased estimator
of the population total.
In finding V(x”) our first step was to solve for Ez(x‘[i). ' Sty

Step 1. By definition

| LN
E,(x°|1) = E. {[— :IIx, K }!1}
2 2 w13

Since i is constant with regard to E2,

NI mn
Ez(x‘li) == II E (x,[1) ~ (3.52)

mn 1j 271]
Proceeding from Equation (3.52) to the following result is left as an

exercise:
N
E,(x 1) = o ixi_ | (3.53)

Step 2. From Equation (3.53) we have

N T
ViE,(x7[1) = v, ixi‘)
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Since the X, 's are independent

i
2
lez(x [1) = =

7 V&)
m

13

Because the first stape of sampling is sampling with probability propor-

tional to ¥, and with replacement,

1
_ MON
3 = ¥ — -
v (&, ) Ty X, X ) (3.54)
Let
= 2
MACTR LY
Then' '
w2 w2
o ViE,(x7]1) = z (mo,,) = ==, (3.55)

v Exercise 3.19. s:Prove that E(ii-‘) = )-(_ . Which shows that it is

appropriate to use i__ in Equation (3.54).

Step 3. To find Vz(x’li)‘, first write the estimator as

R
X7 = L X, (3.56)
i
Then, since the Ei_'s are independent
.qZ m
»~ 1 -
V1) =55V, (x, )
m i
and
_ N,-n ci
(ISR e
i n
where
N
2 il 2
% ? N, (Ky57%40)
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Therefore

Step 4,
2 m N,-n

EV,(x7[1) == = LE

m- n

Since the probability of Vz(x’li) is

N2
E,V,(x 1) = ;2—

S e
M~ 8
R

which becomes

| §2 M Ny N-n
Elvz(x; [4) = — T TGP
mn 1 i

(3.57)

Step 5. Combining Equation ‘(3.55) and Equation (3.57) we have the

answer

02’ N N -n
o 2 (T2 1 N2
V(x”) I | - + I N (Ni_l)oi] (3.58)

e
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CHAPTER 1V. THE DISTRIBUTION OF AN ESTIMATE

4,1 PROPERTIES OF SIMPLE RANDOM SAMPLES

The distribution of an estimate is a primary basis for judging the
accuracy of an estimate from a sample survey. But an estimate is only
one number. How can one number have a distribution? Actually, "distri-
bution of an estimate' is a phrase that refers to the distribution of
all possible estimates that might occur under repetition of a prescribed
sampling plan and estimator (method of estimation). Thanks to theory
and empirical testing of the theory, it is not necessary to generate
physically the distribution of an estimate by selecting numerous samples
and making an estimate from each. However, to have a tangible distribu-
tion of an estimste as a basis for discussion, an illustration has been

prepared.

Illustration 4.1. Consider simple random samples of 4 from an

Nt _ _8!
al(N-m) T - 4141

samples. In Table 4.1, the sample values for all of the 70 possible sam—

assumed population of 8 elements. There are

= 70 possible

ples of four are shown. The 70 samples were first listed in an orderly
manner to facilitate getting all of them accurately recorded. The mean,
i, for each sample was computed and the samples were then arrayed
according to the value of x for purposes of presentation in Table 4.1.
The distribution of x is the 70 values of x shown in Table 4.1, including
the fact that each of the 70 values of x has an equal probability of being
the estimate. These 70 values have been arranged .as a frequency distribu-
tion in Table 4.2.

As discussed previously, one of the properties of simple random
sampling is that the sample average is an unbiased estimate of the popu-

lation average; that is, E(x) = X. This means that the distribution of




Table 4.1--Samples of

four

elements from a population
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of eight 1/

: Values of

e ow

* Values of 3

Sample : : - : 2 Sample: - : 2
number : *4 . X : s ¢ number: Xy X : s
1lc 2,1,6,4 3.25 4.917 : 36s 1,6,8,9 6.00 12,667
2 2,1,4,7 3.50 7.000 : 37s 1,4,8,11 6.00 19.333
3 2,1,4,8 3.75 9.583 : 38s 2,6,8,9 6.25 9.583
4 2,1,6,7 4,00 8.667 : 39s 2,4,8,11 6.25 16.250
5 2,1,4,9 4.00 12.667 : 40s 1,6,7,11 6.25 16.917
6 2,1,6,8 4.25 10.917 : 41s 1,4,11,9 6.25 20.917
7 2,1,6,9 4,50 13.667 : 42 1,7,8,9 6.25 12,917
8 2,1,4,11 4,50 20.333 : 43cs  6,4,7,8 6.25 2.917
9cs 2,1,7,8 4.50 12.333 : 44s 2,6,7,11 6.50 13.667
10 1,6,4,7 4.50 7.000 : 45s 2,4,11,9 6.50 17.667
1ls 2,1.7,9 4.75 14,917 = 46 2,7,8,9 ¢ 6.50 9.667
12 2,6,4,7 4.75 4,917 : 47s 1,6,8,11 6.50 17.667
13 1,6,4,8 4,75 8.917 : 48s 6,4,7,9 6.50 4,333
14 2,1,6,11 5.00 20.667 : 49s 2,6,8,11 6.75 14.250
15s 2,1,8,9 5.00 16.667 : 50s 1,6,11,9 6.75 18.917
16 2,6,4,8 5.00 6.667 : 51 1,7,8,11 6.75 17.583
17 1,6,4,9 5.00 11.337 = 52s 6,4,8,9 6.75 4.917
18s 1,4,7,8 5.00 10.000 : 53s 2,6,11,9 7.00 15.333
19s 2,1,7,11 5.25 21.583 : 54 2,7,8,11 7.00 14.000
20 2,6,4,9 5.25 8.917 : 55 1,7,11,9 7.00 18.667
21s 2,4,7,8 5.25 7.583 : 56s 6,4,7,11 7.00 8.667
22s 1,4,7,9 5.25 12,250 : 57 4$,7,8,9 7.00 4,667
23s 2,1,8,11 5.50 23.000 = 58 2,7,11,9 7.25 14,917
248 2,4,7,9 5.50 9.667 : 59 1i,8,11,9 7.25 18.917
25 1,6,4,11 5.50 17.667 : 60s 6,4,8,11 7.25 8.917
26s 1,6,7,8 5.50 9.667 : 61 2,8,11,9 7.50 15.000
27s 1,4,8,9 5.50 13.667 : 62cs  6,4,11,9 7.50 9.667
28cs 2,1,11,9 5.75 24,917 ¢ 63 6,7,8,9 7.50 1.667
29 2,6,4,11 5.75 14.917 : 64 4,7,8,11 7.50 8.333
30s 2,6,7,8 5.75 6.917 : 65 4,7,11,9 7.75 8.917
31s 2,4,8,9 5.75 10.917 : 66 6,7,8,11 8.00 4,667
32s 1,6,7,9 5.75 11.583 : 67 4,8,11,9 8.00 8.667
33s 1,4,7,11 5.75 18.250 : 68 6,7,11,9 8.25 4.917
34s 2,6,7,9 6.00 8.667 : 69 6,8,11,9 8.50 4,333
35s 2,4,7,11 6.00 15.333 ¢ 70c 7,8,11,9 8.75 2.917
1/ Values of X for the population of eight elements are Xl = 2, X2 =1,
X3 = 6, Xa_-24, XS -7, X6 = 3, X7 = 11, x8 =9; X = 6.00; "and
2 Z(xi-x)
$° m ———— = 12.

N-1
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Table 4.2--Sampling distribution of x

Relative frequency of x

:Stratified random
: sampling
:Illustration 4.2

E

Simple random
: sampling ‘
tIllustration 4.1

.
.

.Cluster sampling
Illustration 4.2

e 98 as se s

3.25
3.50
. 3.75
4.00
« 4.25
4.50
4.75
¥ 5;00
5.25 "F SrfTRanc
5.50
5.75
6.00 -
6.25
6.50
6.75
7.00
7.25
- 7.50
7.75
¢ 8.00
8.25
8.50
| 8.75

T A
T N L T

o N WS LW e

Total

~
o
[=))

36

Expected value
of x 6.00 6.00 6.00

Variance of x 1.50 ‘ 3.29 0.49
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x 18 centered on X. If the theory is correct, thg average of x for the

70 samples, which are equally likely to occur, should be equal to the

population hverage, 6.00. The average of the 70 samples does equal 6.00.
From the theory of expected values, we also know that the variance

of x is given by

2

N-n S .

Hino

ggﬁ@_ggg where

a3 N )

Z(Xi-x)

S2 -1
| N-1

2

! |
With reference to Illustration 4.1 and Table 4.1, S2

_Qgﬁ.%l = 1.5 . The formula (@.1) can be verified by computing the

= 12.00 and 52 =
X

variance among the 70 values of x as follows:

(3.25-6.00)% + (3.50-6.00)% +...+ (8.75-6.00)% _
70

1.5

Since S2 is a population parameter, it is usually unknown. Fortu-

nately, as discussed in Chapter 3, E(sz) - 52 where

n
2(x1-§)2
I 82 - i
o n-1

In Table 4.1, the value of 32 is shown for each of the 70 samples. The

average of the 70 values of sz is equal to Sz. The fact that E(sz) - 82
is another important property of simple random samples. In practice 82 is

used as an estimate of 52. That 1is,
2

»in

N-n
8 N

bl‘ﬂ

is an unbiased estimate of the variance of x.
To recapitulate, we have just verified three important properties of

simple random samples:
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S
/n

The standard error of x, namely S; , 1s a measure of how much x varies
under repeated sampling from X. Incidentally, notice that Equation (4.1)
shows how the variance of x is related to the size of the sample. Now
we need to consider the form or shape of the distribution of x.

Definition 4.1. The distribution of an estimate is often called the

sampling distribution. It refers to the distribution of all possible“
values of aniestimate that could occur under a prescribed sampling plan;f
4.2 SHAPE OF THE SAMPLING DISTRIBUTION
For random sampling there is a 1afge volume of literature on the o
distribution of an estimate which we will not attempt to review. In
practice, the distribution is generally accepted as being normal (See
Figure 4.1) unless the sample size is '"small." The theory and empirical
tests show that the distribution of an estimate approaches the normal
distribution rapidly as the size of the sample increases. The closeness
of the distribution of an estimate to the normal distribution depends on:
(1) the distribution of X (i.e., the shape of the frequency distribution
of the values of X in the population being samﬂled), (2) the form of the
estimator, (3) the sample design, and (4) the sample size. It is not
possible to give a few simple, exact guidelines for deciding when the
degree of approximation is good enough. In practice, it is generally a

matter of working as though the distribution of an estimate is normal but

being mindful of the possibility that the distribution might differ
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I | I ' |
E(x )-20x, E(x )-ox, E(x7) “3E(x )fcx,‘miE(x )+20x’

Figure 4.1--Distribution of anwestimate (normal distribution)

considerably from normal when the sample is very small and the population
distribution is highly skewed. 3/

It is very fortunate that the sampling distribution is approximately
normal as it gives a basis for probability statements about the precision
of an estimate. As notation,x” will be the general expression for any
estimate, and 0 - is the standard error of x~.

Figure 4.1 is a graphical representation of the sampling distribution
of an estimate. It is the normal distribution. In the mathematical
equation for the normal distribution of a variable'there are two parameters:

| the average value of the variable, and the standard error of the variable.

g/ For a good discussion of the distribution of a sample estimate, see
Vol. I, Chapter 1, Hansen, Hurwitz, and Madow. Sample Survey Methods and
Theory, John Wiley and Sons, 1953.
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Suppose x° is an estimate from a probability sample. The characteristics
of the sampling distribution of x° are specified by three things: (1) the
expected value of x°, E(x;), which is the mean of the distribution; (2) the
standard error of x~, O - and (3) the assumption that the distribution is
normal. If x” is normally distributed, two-thirds of the values that x~
could equal are between [E(x”) - ox,] and [E(x") + ax,], 95 percent of the
possible values of x” are between [E(x”) - Zox,] and [E(x7) + Zax,], and

99,7 percent of the estimates are within 3ax, from E(x7).

Exercise 4.1. With reference to Illustration 4.1, find E(x) - oz and‘
E(x) + o - Refer to Table 4.2 and find the proportion of the 70 valuesh'%w_
of x that are between E(x) - o and E(x) + og - How does this compare witﬁ
the expected proportion assuming the sampling distribution of x is normal?
The normal approximation is not expected to be close, owing to the small |
size of the population and of the sample. Also compute E(x) - 20; and
E(x) + 20; and find the proportion of the 70 values of x that are between
these two limits.
4.3 SAMPLE DESIGN

There are many methods of designing and selecting samples and of making
estimates from samples. Each sampling method and estimator has a sampling
distribution. Since the sampling distribution is assumed to be normal,
alternative methods are compared in terms of E(x”) and g - (or ci,).

For simple random sampling, we have seen, for a sample of n, that

every possible combination of n elements has an equal chance of being the

sample selected. Some of these possible combinations (samples) are much
better than others. It is possible to introduce restrictions in sampling

so some of the combinations cannot occur or so some combinations have a
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higher probability of occurrence than others. This can be done without
introducing bias in the extimate x” and without losing a basis for esti-
mating Oy e - Discussion of particular sample designs is not a primary
purpose of this chapter. However, a few simple illustrations will be
used to introduce the subject of design and to help develop concepts of
sampling variation.

Illustration 4.2. Suppose the population of 8 elements used in

Table 4.1 is arranged so it consists of four sampling units as follows:

Sampling Unit Elements Values of X Sample Unit Total
1l 1,2’ xl -2, x2 = 1 3
[ 2 3,4 x3 = 6,.x4 = 4 10
3 5,6 XS =7, x6 = 8 15
4 7,8 x7 = 11, x8 =9 20

For sampling purposes the population now consists of four sampling
units rather than eight elements. I1f we select a simple random sample of
two sampling units from the population of four sampling units, it is clear
that the sampling theory for simple random sampling applies. This illus-
tration points out the importance of making a clear distinction between a
sampling unit and an element that a measurement pertains to. A sampling
unit corresponds to a random selection and it is the variation among sam-
pling units (random selections) that determines the sampling error of an
estimate. Wﬁen the sampling units are composed of ﬁore than one element,
the sampling is commonly referred to as cluster sampling because the ele-

ments in a sampling unit are usually close together geographically.
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For a simple random sample of 2 sampling units, the variance of Ec’

where ;c is the sample average per sampling unit, is

.52
‘s.% - Non £ = 13.17
x, N n

where

- 1%+ 10112)% + a5-12)% + (20-12)% _ 158

2
N=4,n=2, and Sc 3 3

Instead of the average per sampling unit one will probably be interested

x -
in the average per element, which is x = 35 s 8ince there are two elements -
in each sampling unit. The variance of x is one-fourth of the variance
of ic. Hence, the variance of x is égill = 3.29.

There‘ire only‘six possible random samples"as follows:

| Sample average per

Sampleﬁ”Sampling Units . sampling unit, ic s:
1 1,2 - 6.5 24,5
2 1,3 9.0 72.0
3 1,4 11.5 144.5
4 2,3 12.5 12.5
5 T 2,4 15.0 50.Q
6 3,4 17.5 : 12.5
n
Z(x,-% )2
where s: - P~ and x; is a sampling unit total. Be sure to notice

that si (which 18 the sample estimate of Sz) is the variance among sampling
units in the sample, not--the variance among individual elements in the

sample. From the list of six samples, it is easy to verify that ic is an

unbiased estimate of the population average per sampling unit and that s:

is an unbiased estimate of l%ﬁ » the variance among the four sampling
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units in the population. Also, the variance among the six values of x is
13.17 which agrees with the formula.

The si¥ possible cluster samples are among the 70 samples listed in
Table 4.1. Their sgmple numbers in Table 4.1 are 1, 9, 28, 43, 62, and
70. A "c¢" follows these sample numbers. The sampling distribution for
the six samples is shown in Table 4.2 for comparison with simple random
sampling. It is clear‘fr$m inspection that random selection from these
six is less desirable than random selection from the 70. For example,
one of the two extreme averages, 3 25 or 8. 75 ‘has a probability of l-of

3

occurring for the cluster sampling and a probability of only %g-when
selecting a simple random sample of four elements. In this illustration,
the sampling restriction (clustering of elements) increased the‘sampling”
variance from 1.5 to 3.29. |

It is of importance to note that the average variance among elements
within the four clusters is only 1.25. (Students should compute the within
cluster variances and verify 1.25). This is much less than 12.00, the
variance among the 8 elements of the population. In reality, the varilance
among elements within clusters is usually less than the variance among all
elements in the population, because clusters (sampling units) are usually
compésed of elements that are close together and elements that are close

together usually show a tendency to be alike.

Exercise 4,2. In Illustration 4.2, if the average variance among

elements within clusters had been greater than 12.00, the sampling variance
for cluster sampling would have been less than the sampling variance for a

simple random sample of elements. Repeat what was done in Illustration 4.2
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using as sampling units elements 1 and 6, 2 and 5, 3 and 8, and 4 and 7.
Study the results.

Illustration 4.3. Perhaps the most common method of sampling is to

assign sampling units of a population to groups called strata. A simple
random sample is then selected from each stratum. Suppose the population
used in Illustration 4.1 is divided into two strata as follows:

Stratum 1 Xl = 2,‘X2 =1, X, =6,X =4

4

Stratum 2 XS =7, X6 = 8, X7 =11, X8 = 9
RN

The sampling plan is to select a simple random sample of two elemeﬁts

3

from each stratum. There are 36 possible samples of 4, two fro& eaEH’Jf?-
étréﬁum. ‘Tﬁese 3é‘samples‘are identified in Table ﬁ.l‘ﬁy an'snaftef tﬁen.

sample number so you may compare the 36 poésible strgéified random samﬁi;i? f'
with the 70 simple random samples and with the six cluster sampieslh Als&fjli ”

see Table 4.2.
Consider the variance of x. We can write
X ¥%,
2

X =
where §1 is the sample average for stratum 1 and §2 is the average for

stratum 2. According to Theorem 3.5
2= @2 +sk +asc o)
1 2 172
We know the covariance, S; o is zero because the sampling from one
172
stratum is independent of the sampling from the other stratum. And,

since the sample within each stratum is a simple random sample,
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The subscript "'1" refers to stratum 1. Si is of the same form as S% .
2 1
Therefore, 2 2
2 1 ™ S M 5
STalw— o Y w5,
_ 1 1 T2 M
Since
Nl_nl = Nz_nz -1 and n, = n, = 2
Nl N2 2 1l 2
52+52
21272y L1 h9242.92) g 4

The varianée, 0.49, is comparable to 1.5 in Illustration 4.1 and to 3.29 in
Illustration 4.2.
‘ I B o

In Illustration 4.2, the sampling units were groups of two elements qu‘
the variance among these groﬁps (sampling units) appeared in the formula
for the‘va;iance of §.' In Illustration 4.3, each element was a sampling
unit but the selecgion process (randomization) ;as restricted to taking
one stratum (subset) at a time,so the sampling variance was determined by
variability wi;hin strata. As you study sampling plans, form mental pictures
of the variation which the sampling error depends on. With experience and
accumulated knowledge of what the patterns of variation in various popula-
tions are like, one can become expert in judging the efficiency of alterna-
tive sampling plans in relation to specific objectives of a survey.

I1f the population and the samples in the above illustrations had been
larger, the distributions in Table 4.2 would have been approxinately nor-
mal. Thus, since the form of the distribution of an estimate from a prob-
ability sample survey is accepted as being normal, only two attributes of

an estimate need to be evaluated, namely its expected value and its

variance.
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In the above illustrations ideal conditions were implicitly assumed.
Such conditions do not exist in the real world so the theory must be
extended to fit, more exaétly, actual conditions. There are numerous
sources of error or variation to be eva;uated. The nature of the rela-
tionship between theory and practice is a major governing factor deter-
‘y;l : mining the rate of progress toward improvement of the accuracy of survey
results.

We will now extend error concepts toward more practical settings.

4.4 RESPONSE ERROR

So far, we have discussed sampling under implicit assumptions that
measurements are obtained from all n elements in a sample and that the
measurement for each element is without error. Neither assumption fits,
exactly, the real world. In addition, there are "coverage" errors of
various kinds. For example, for a farm survey a farm is defined but
( application of the definition involves some degree of ambiguity about
whether particular enterprises satisfy the definition. Also, two persons
might have an interest in the same farm tract giving rise to the posaibiiity

that the tract might be counted twice (included as a part of two farms) or

omitted entirely.

L Partly to emphasize that error in an estimaté is more than a matter
of sampling, statisticians often classify the numerous sources of error
into one of two general classes: (1) Sampling errors which are errors
associated with the fact that one has measurements for a sample of elements
rather than measurements for all elements in the population, and (2) non-
sampling errors--errors that occur whether sampling is involved or not.

Mathematical error models can be very complex when they include a term for
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each of many sources of error and attempt to represent exactly the real
world. However, complicated error models are not always necessary,
depending upon the purposes;

For‘purposes of discussion, two oversimplified response-error models
will be used. This will introduce the subject of response error and give
some clues regarding the nature of the impact of response error on the
distribution of an estimate. For simplicity, we will assume‘that a
measurement is obtained for each element in a random sample and that no
ambiguity exists regarding the identity or definition of an element. Thus,

we will be considering sampling error and response error simultaneously.

Illustration 4.4. Let :1""’Tﬁ be the "true values" of some variable .
for the N elements of a population. The mention of true values raises = ;.
numerous questions about what is a true value. For example, what is your .,
true weight? How would you define the true weight of an individual? We . .
will refrain from discussing the problem of defining true values and simply -
assume that true values do exist according to some practical definition.

When an attempt is made to ascertain Ti' some value other than T, might

i

be obtained. Call the actual value obtained Xi. The difference, e, =

is the response error for the 1th element. If the characteristic,
h

Xi - Ti'

for example, is a person's weight, the observed weight, xi, for the 1t
individual depends upon when and how the measurement is taken. However,

for simplicity, assume that X, is always the value obtained regardless of

i

the conditions under which the measurement is taken. 1In other words,
assume that the response error, e is constant for the ith element. In
this hypothetical case, we are actually sampling a population set of values

X

1""’XN instead of a set of true values Tl""’T

N.
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Under the conditions as stated, the sampling theory applies exactly
to the set of population values Xl,...,XN. If a simple random sample of

elements is selected and ﬁeasurements for all elements in the sample are

=

LT
‘ i
obtained, then E(x) = X. That is, if the purpose is to estimate T = i_

N 3
the estimate is biased unless T happens to-be equal to X. The bias is
X - T which is appropriately called "response bias."
Rewrite e, = Xi - TL as follogg:

Xi - 1“1« +‘e

i AT Wb b VLA LN S Co S RERT
Then, the mean of a simple random ,sample .may be expressed as

n n ‘ F A S O AL

_ in Z(ti+ei) ’ .
X = = Y i
n n — i
or, as x=t+e.

From the theory of expected values, we have
E(x) = E(t) + E(e)
Since E(x) = X and E(t) = T it follows that
X=T+ E(e) N
- - - - Eei
Thus, x is a biased estimate of T unless E(e)= 0, where E(e) = - -

That is, E(e) 1s the average of the response errors, e,, for the whole

1'
population.,

For simple random sampling the variance of x is

N o,
2 L(X,-X)
S 1

sg - N0 X wher 32 - i

x° N n e 9x N-1

How does the response error affect the variance of X and of x? We have

already written the observed value for the ith element as being equal to

(4.2)
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its true value plus a response error, that is, Xi - '1'1 + e, . Assuming

random sampling, '1‘i and e, are random variables. We can use Theorem 3.5

from Chapter II1 and write

2 2 2
Sy = Sp+ S, + 2sT’e (4.3)
where Si is the variance of X, S% is the variance of T, SZ is the response
variance (that is, the variance of e), and S is the covariance of T and

T,e
e. The terms on the right-hand side of Equation (4.3) cannot be evaluated

unless data on Xi and T, are available; however, the equation does show how

i
the response error influences the variance of X and hence of x.
As a numerical example, assume.a population of five elements and the

following values for T and X:

e K !
23 26 3
13 12 -1
17 23 6
25 25 0
_1 9 2
Average 17 19 2

Students may wish to verify the following results, especially the variance

of e and the covariance of T and e:
s2 = 62.5 s2 =540 S$°=7.5 S. =0.5
x T » - »

As a verification of Equation (4.3) we have

62.5 = 54.0 + 7.5 + (2)(0.5)
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n

(x,-%)
From data in a simple random sample one would compute s% = 1 ]
82
and use !ﬁﬁ- ;5 as an estimate of the variance of x. Is it clear that
2 2 2

s, is an unbiased estimate of Sx rather than of ST and that the impact of
variation in e, is included in si ?

To summarize, résponse error caysed a bias in x as an estimate of T
that was ‘equal to X - T. In addition, it was a source of variation included
‘in the standard error of x. To evaluate bias and variance attributable to
1 and T1 must be available.

Illdsffation 4.5. In this:case, we assume that the‘response error

response error, information on X

for a given element is not constant. That is, if an element were measured
on several occasions, the observed values for the ith element could vary
even though the'true value, Ti’ remained‘unchanged. Let the error model be

xij - Ti + eij

where xij is the observed value of X for the ith element when the

observation is taken on a particular occasion, j,

Ti is the true value of X for the 1th element,

and e/, is the response error for the ith element on a particular

i3

occasion, j.

Asgume, for any given element, that the response error, , 18 a random

eij

variable. We can let e/, = e, + e,,, where e, is the average value of e

13 17 %1y 1
for a fixed 1, that 1is, ;i - E(eijli). This divides the response error
h

1)

for the 1t element into two components: a constant component, ;1’ and a

variable component, By definition, the expected value of eij is zero

eij'
for any given element. That is, E(eijli) = 0.
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Substituting Ei + e,, for e;,, the model becomes

13 1j

xi.j =T, +e + eij (4.4)

The model, Equation (4.4), is now in a good form for comparison with

i

Equation (4.2) is constant for a given element. Thus, the two models

the model in Illustration 4.4, In Equation (4.4), ;i’ like e, in

are alike except for the added term, e in Equation (4.4) which allows

i3’
for the possibility that the response error for the ith element might not

be constant.
.o T S TR \ R S

Assume a simple random sample of n elements and one observation for
‘ Co N '

each element. According to the model, Equation (4.4), we may now write

' 1 } . i

the sample mean as follows:

P TLET v

Lt p Z
T T . . B
X == 4+ =— +
n ‘n n

Summation with respect to j is not needed as there is only one observation
for each element in the sample. Under the conditions specified the expected
value of x may be expressed as follows:

E(x) =T + e

N N_
ZTi Zei
where Tel  ande= i
N N

The variance of x is complicated unless some further assumptions are

made. Assume that all covariance terms are zero. Also, assume that the

‘conditional variance of e is constant for all values of 1; that is, let

1]
V(eijli) - Sz. Then, the variance of x is

N
N

2
5r, ¥
n N

=) lmm
Dlmm

N-n
S N

®ino
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N N
£(T,~T)2 Z(e,-o)°
1 1
h s2al s2 -l
where T N-1_ ' e N-1  °

and S: is the conditionai variance of e that is, V(e ]i). For this

ij°? .
model the variance of x does not diminish to zero as n»N. However, assuming
_ 52
! N is large, the variance of x, which becomes oo is probably negligible.

Definition 4.2. Mean-Square Error. In terms of the theory of expected

values the mean-square error of an estimate, x°, is E(x‘—T)2 where T is the

target value,-that is, the value being estimated. From the theory it is

easy to show that S R
Y Ex-T)? = [EGD-TI% ¥+ E[x~E(x"))%

L . : v : o I
Thus, the mean~square error, mse, can be expressed as follows:

i

mse = B2 + c:, (4.5)

where B=E(X")-T (4.6)
2 - eyl

and O .= E[{x™-E(x7)]" 4.7)

Definition 4.3. Bias. ' In Equation (4.5), B is the bias in x” as

; an estimate of T.

‘:“k Definition 4.4. Precision. The precision of an estimate is the
| - standard error of the estimate, namely, ax, in Equation (4.7).
Precision is a measure of repeatability. Conceptually, it is a
measure of the dispersion of estimates that would be generated by repetition
of the same sampling and estimation procedures many times under the same
conditions. With reference to the sampling distribution, it is a measure

, of the dispersion of the estimates from the center of the distribution and
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does not include any indication of where the center of the distribution
is in relation to a target.

In Illustrations 4.1, 4.2, and 4.3, the target value was implicitly
assumed to be X; that is, T was equﬁl to X. Therefore, B was zero and
the mean-square error of x” was the same as the variance of x“. 1In
Illustrations 4.4 ané 4.5 the picture was broadened somewhat by intro-
ducing response error and examining, theoretically, the impact of response
error on E(x”) and O e In practice many factors have potential for
influencing the sampling distribution of x”. That is, the data in a
sample are subject to error that might be attributed to several sources.

From sample data an estimate, x°, 1is comppted and an estimate of the
variance of x” is also computed. How does one interpret the results? 1In
Illustrations 4.4 and 4.5 we foundlthat response error could be divided
into bias and variance. The error from any source can, at least concep-
tually, be divided into bias and variance. An estimate from a sample is
subject to the combined influence of blas and variance corresponding to
each of the several source; of error. When an estimate of the variance
of x” is computed from sample data, the estimate is a combination of
variances that might be identified with various sources. Likewise the
difference between E(x”) and T 18 a combination of biases that might be
identified with various sources.

Figure 4.2 illustrates the sampling distribution of x“ for four
different cases: A, no bias and low standard error; B, no bias and large
standard error; C, large bias and low standard error; and D, large bilas
and large standard error. The accuracy of an estimator is sometimes defined

as the square root of the mean-square error of the estimator. According
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| T — ? r
¥ T T
E(x7) E(x")
A: No bias--low standard error B: No bias--large standard error -

.47-._3‘_‘ '

p 4 l vt
) i ’E(x’) T E(x?)

C: Large bias--low standard error D: Large bilas——large standard error

Figure 4,2--Examples of four sampling distributions

Figure 4.3~~Sampling distribution—-—
Each small dot corresponds to an estimate
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to that definition, we could describe estimgtors having the four sampling
distributions in Figure 4.2 as follows: In case A the estimator is precise
and accurate; in-B the estimator lacks precision and is therefore inaccurate;
in C the estimator is precise but ihagcurate because of bias, and in D “the
estimator i1s inaccurate because of bias and low precision.

Unfortunately, it is generally not possible to determine, exactly,
the magnitude of bias in an estimate, or of a particular component of bias.
However, evidence of the magnitude of bias is often available from general
experience, from knowledge of how well the survey processes were performed,
and from special investigations. The author accepts a point of view that
the mean-square error is an appropriate concept of accuracy to follow. 1In
that context, the concern becomes a matter of the magnitude of the mse and
the size of B relative to cx,.‘ﬁIhatmyiewpoint is important because it is |
not possible to be[cettain that B is zero. Our goal should be to prepare
survey specifications and to conduct survey operations so B is small in
relation to O - Or, one might say we want the mse to be minimum for a
given cost of doing the survey. Ways of getting evidence on the magnitude
of bias is a major subject and is outside the scope of this publication.

As indicated in the previous paragraph, it is important to know some-
thing about the magnitude of the bias, B, relative to the standard error,
O -+ The standard error is controlled primarily by the design of a sample
and its size. For many survey populations, as the size of the sample
increases, the standard error becomes small relative to the bias. 1In fact,
the bias might be larger than the standard error even for samples of
moderate size, for example a few hundred cases, depending upon the circum-

stances. The point is that if the mean-square error is to be small, both
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B and 0x’ must be small. The approaches for reducing B are very different
from the approaches for reducing Ox" The greater concern about non-
sampling-error is bias récher than impact on variance. In the design and
selection of samples and in the processes of doing the survey an effort is
made to prevent biases that are "sampling" in origin. However, in survey
work one must be constantly aware of potential biases and on the alert to
minimize biases as well as random error (that is, ax,).

The above discussion puts a census in the same light as a sample.
Results from both havé a mean-square error. Both are surveys with refer-
ence to use of results. Uncertain inferences are involved in the use of
results fr;m“h census as well as from™a sample. The only difference is
that in a census one attempts to get a measurement for all N elements,
but mﬁking n = ﬁ“doeé hot reduce the mse to zero.‘ Indeed, as the sample“
size 1ncrehsés}cheré is no pbsitive assurance that fhe‘hse will always
decrease; because, as the variance component of the mse decreases, the
bias component might increase. This can occur especially when the popu-
lation is large and items on the questionnaire are such that simple,
accurate answers are difficult to obtain. For a large sample or a census,
compared to a small sample, it might be more difficult to control factors
that cause bias. Thus, it is possible for a census to be less accurate
(have a larger mse) than a sample wherein the sources of error are more
adequately controlled. Much depends upon the kind of information being
collected.

4.5 BIAS AND STANDARD ERROR
The words "bias," "biased," and "unbiased" have a wide variety of

meaning among various individuals. As a result, much confusion exists,
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especially since the terms are often used loosely. Technically, it seems
logical to define the bias in an estimate as being equal to B in Equation
(4.6), which is the differehce between the expected value of an estimate
and the target value. But, except for hypothetical cases, numerical values
do not exist for either E(x”) or the target T. Hence, defining an unbiased
estimate as one where B = E(x”) - T = 0 is of 1little, if any, practical
value unless one is willing to accept the‘target as being equal to E(x”).
From a sampling point of view there are cpnd;tions that give a rational
basis for accepting E(x“) as the targe;rvqﬂowgver, regardless of how the
target is defined, a good practicglxin;erpretation of E(x”) is needed.

It has become common practice amongj§qugy statisticians to call an
estimate unbilased when it is baseﬁ‘ppwmgthoﬂs of sampling and estimgtion“v:
that are "unbiased." 13‘01':e:;:mnpl‘leﬂ,4 in:I}lusFration 4.4, Elwould be referred
to as an unbilased estimate--unbiased because the method of sampling and
estimation was unbiased. In other words, since x was an unbiased estimate
of i, x could be interpreted as an unbiased estimate of the result that
would have been obtained if all elements in the population had been
measured.

In Illustration 4.5 the expected value of x is more difficult to
describe. Nevertheless, with reference to the method of sampling and
estimation, x was "unbiased" and could be called an unbiased estimate
even though E(X) is not equal to T.

The point is that a simple statement which says, "the estimate is
unbiased" is incomplete and can be very misleading, especially if one is
not familiar with the context and concepts of bias. Calling an estimate

unbiased is equivalent to saying the estimate is an unbiased estimate of
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its expected value. Regardless of how "bias" 1s defined or used, E(x”)
is the mean of the sampliqg distribution of x; and this concept of E(x”)
is very 1ﬁportant because E(x”) appears in the standard error, Oy s of x~
as well as in B. See Equations (4.6) and (4.7).

As a simple concept or picture of the error of an estimate from a
survey, the writer likes the analogy between an estimate and a shot at
a target with a gun or an arrow. Think of a survey being replicated
many times using the same sampling plan, bué a different sample for each
replication. Each replication would provide an estimate that cotrespoﬁds !
to a shot at a target. |

. e
In Figure 4.3, each dot corresponds to an estimate from one of the

replicated samples. The center of the cluster of dots is labeled E(x))

. " ]
fad ot i ikl

because it corresponds to the expected value of an estimate. Around the

PR

. point E(x”) a circle is drawn which contains two-thirds of the points.

The radius of this circle corresponds to O s the standard error of the
estimate. The outer circle has a radius of two standard errors and con-
tains 95 percent of the points. The target is labeled T. The distance
between T and E(x”) ia bias, which in the figure is greater than the
standard error.

In practice, we usually have only one estimate, x“, and an estimate,
8 s of the standard error of x°. With reference to Figure 4.3,‘this
means one point and an estimate of the radius of the circle around E(x”)
that would contain two-thirds of the esfimates 1n.repeated samplings. We
do not know the value of E(x”); that 18, we do not know where the center
of the circles i1s. However, when we make a statement about the standard

error of x°, we are expressing a degree of confidence about how close a
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particular estimate prepared from a survey is to E(x”); that is, how
close one of the points in Figure 4.3 probably is to the unknown point
E(x“). A judgment as to how far E(x”) is from T is a matter of how T
is defined and assessment of the magnitude of biases associated with
various sources of error.

Unfortunatelf, it is not easy to make a short, rigorous, and complete
interpretative statement about the standard error of x”. If the estimated
standard error of x” is three percent, one could simply state that fact
and not make an interpretation. It does not help much to say, for example,
that the odds afé aﬁout two out of three that the estimate is within three
percent of its expected value, because a person familiar with the concepts
* already uﬂ@er?tands that and'it‘probaﬁly does not help the person who is
unfamiliar wifh the concepts. Suppo?e one states, ''the standard error of
x” means the odag are two oug‘of three‘that the estimate is within three
percent of the value that would have been obtained from a census taken

under identically the same conditions.’ That is a good type of statement
to make but, when one engages in considefations of the finer points,

interpretation of "a census taken under identically the same conditions'

-

is needed--especially since it is not possible to take a census under

identically the same conditions. aiy
In summary, think of a survey as a fully defined system or process

including all details that could affect an estimate, including: the method

of sampling; the method of estimation; the wording of questions; the order

of the questions on the questionnaire; interviewing procedures; selection,

training, and supervision of interviewers; and editing and processing of
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data. Conceptually, the sampling is then replicated many times, holding
all specifications and conditions constant. This would generate a sam-
pling dis;ribution as illustrated in Figures 4.2 or 4.3. We need to
recognize that a change in any of the survey specifications or conditions,
regardless of how trivial the change might seem, has a potential for
changing the sampling distribution, especially the expected value of x~.
Changes in survey plans, even though the definition of the parameters
being estimated remains unchanged, often result in discrepancies that
are larger than the random error that can be attributed to sampling.

The points discussed in the latter part of this chapter were included

to emphasize that much more than. a well designed sample is required to

" assure accurate results. Good survey planning and management calls for
‘ evaluation of errors from all sources and for trying to balance the effort

. to control error from various sources so the mean-square error will be

within acceptable limits as economically as possible,
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